24 One Sided Error, Amplification, k-path Tuesday, April 15, 2025 13:53

Example: If
$$p=1/2$$
 and $T=20$ then new also is only 20 himes slower
Let frilure probability is $\frac{1}{2^{20}} \approx \frac{1}{1 \min llion}$
This is referred to as "amplification"

For any
$$k = n^{\varepsilon}$$
, constant ε , this is NP-hard $n^{0.00001}$
Uhat if k is constant? Can we have a fast/pot/-hime algorithm?
Simple/Slow by all $\binom{n}{k} = n^{k}$ $v_{1}v_{2}..v_{k}$ votex l_{i} -hypes
and check if (v_{1}, v_{1+1}) is a valid edge
 $=) O(n^{k})$
Methods in $O(n^{k})$

Nicer vould be c'hime complexity like
$$O(1E1)$$
 $O(m)$ time
eg $O(z^k \cdot m) = O(m)$ it k is constant
"FPT" fixed parameter tractable

Lith ver coloring.

$$P(all c.k^{k} repetiblions find) = \prod_{i=1}^{c.k^{k}} P(ke into vertice finds)$$

$$(1 - \frac{1}{n})^{n} = \frac{1}{e}$$

$$e (1 - \frac{1}{k^{k}})^{c.k^{k}} = \left(\left(1 - \frac{1}{k^{k}}\right)^{k^{k}}\right)^{c}$$

$$\lim_{n \to \infty} (1 - \frac{1}{n})^{n} = \frac{1}{e}$$

$$e (1 - \frac{1}{k^{k}})^{c.k^{k}} = \left(\left(1 - \frac{1}{k^{k}}\right)^{k^{k}}\right)^{c}$$

$$\lim_{n \to \infty} (1 - \frac{1}{n})^{n} = \frac{1}{e}$$

$$e (1 - \frac{1}{k^{k}})^{c.k^{k}} = \left(\left(1 - \frac{1}{k^{k}}\right)^{k^{k}}\right)^{c}$$

$$\lim_{n \to \infty} (1 - \frac{1}{n})^{n} = \frac{1}{e}$$

$$e (1 - \frac{1}{k^{k}})^{c.k^{k}} = \left(\left(1 - \frac{1}{k^{k}}\right)^{k^{k}}\right)^{c}$$

$$\lim_{n \to \infty} (1 - \frac{1}{n^{k}})^{n} = \frac{1}{e^{2}}$$

$$e (1 - \frac{1}{k^{k}})^{c.k^{k}} = \left(\left(1 - \frac{1}{k^{k}}\right)^{k^{k}}\right)^{c}$$

$$\lim_{n \to \infty} (1 - \frac{1}{n^{k}})^{n} = \frac{1}{e^{2}}$$

$$e (1 - \frac{1}{k^{k}})^{c}$$

$$\lim_{n \to \infty} (1 - \frac{1}{k^{k}})^{n} = \frac{1}{e^{2}}$$

$$e (1 - \frac{1}{k^{k}})^{c}$$

$$\lim_{n \to \infty} (1 - \frac{1}{k^{k}})^{c}$$

$$e (1 - \frac{1}{k^{k}})^{c}$$

$$\lim_{n \to \infty} (1 - \frac{1}{k^{k}})^{c}$$

$$e (1 - \frac{1}{k^{k}})^{c}$$

$$e (1 - \frac{1}{k^{k}})^{c}$$

$$\lim_{n \to \infty} (1 - \frac{1}{k^{k}})^{c}$$

$$e (1 - \frac{1}{k^{k}})^{c}$$

$$e$$

k = vares





