Testbench, System Tasks/Functions, Compiler directives, Simulation,
EDA Tools

ECE-111
Vishal Karna UC San Diego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Why Testbench ?

1 SystemVerilog design RTL code is developed to specify a circuit, but :
= How do we know if the circuit works correctly as per the original intent ?

 Hardware generation by trial and error is costly!

[To avoid costly hardware generation re-spins :
= Perform functional verification of design code prior to actual hardware fabrication
» Functional verification is performed by developing testbench code
o Using event driven simulator and testbench code simulate design-under-test (DUT)

M In modern digital designs functional verification is one of the most complex and time
consuming stage of ASIC design flow

= Quality of hardware is dependent on completeness in verification !!

What is a Testbench ?

[Testbench is a SystemVerilog module which tests another module know as design-
under- test (DUT)

J Non-synthesizable code and it is not part of the final hardware generated
= Testbench is a SystemVerilog procedural block that executes only once
" |tis used for simulation purpose only

[Types of testbench :

» Basic directed testbench without using advance SystemVerilog OOP constructs :
o Without self-checking, only stimulus generation for input signals of design
o With self-checking and stimulus generation using code specified within procedural block
o With self-checking and stimulus generated using input vector file

= Advance constraint random and coverage driven testbench using SystemVerilog OOP
constructs

Note : ECE-111 course will only cover basic directed testbench. Advance testbench using
SystemVerilog OOP constructs is out of the scope of this course.

Basic Testbench Without Self-Checking

d Testbench contains top SystemVerilog module without primary ports

1 Instantiates the design-under-test (DUT)
= |nputs and outputs of the DUT are connected to the local variables in testbench

[Generates stimulus for all input signals using initial, always procedural blocks and blocking

statements (=)

= Clock generation logic using always procedural block and apply generated clock to DUT clock signal

= Applies series of values from one or more initial blocks to all input and inout signals of DUT

J Outputs are observed and compared against expected behavior by reviewing simulation
waveforms — This approach of ensuring correctness of design is cumbersome and error prone !

Generate stimulus
to drive Input signals

SystemVerilog Top Testbench Module (no primary ports)

DUT °“tc|)°r‘t': < Dump Waveform /
(RTL) . timing diagram

input
: ,
=—=
—_—
input
< —>
-
Clock can be generated |—T|_| I
using always block > Clock reset

Visualize & debug
Waveform using
waveform viewer

Basic Testbench With Self-Checking

O Includes statements and code to perform self-checking

Monitor input and output signals

Compare outputs with expected values at each cycle or with respect to certain state of signals
Alternatively, compare outputs with golden model developed using function/task/module

Generate pass or failure message for each occurrence using simulator system tasks such as Sdisplay, Serror

With this approach functional failures of design are generated dynamically without relying for exhaustive
cycle by cycle waveform checking — Practical approach to ensure correctness of design in a test scenario !

SystemVerilog Top Testbench Module (no primary ports)

Monitor input and output signals.
Self-checking with pass/fail criteria

MHEVEIENS

Generate stimulus block-M Visualize & debug
to drive Input signals Waveform using
e waveform viewer

initial

block-1 ports DUT output ———/A I RUEN el)

. input (RTL) os timing diagram

initial E——
-

Clock can be generated ‘gl
using always block > Clock reset

Testbench With Self-Checking Example

 Testbench using multiple initial blocks and self-checking

“timescale 1ns/10ps // timeunit=1ns, precision=10ps

moc!ulg tes_,tbench_t.op; // Testbench module without ports |~ __ module fulladder(// Design Module (DUT)
logicinO, in1, carryin, ___--"7 . . .
logic[1:0] result; ~___----""""_ GBS Ioglc.a, b, cin,
_________ output logic sum, cout
fuIIadde‘r—D—UT(// instantiate design under test);
a(in0), logic p, g;
b(in1), assignp=a”"b;
.cin(carryin), assighng=a & b;
.cout(result[1]), assign sum = p A cin;
-sum{result[0])); assign cout = q | (p & cin);
endmodule

initial begin // initial block to drive input values
repeat(10) begin
in0 = Srandom; //apply random stimulus
inl = Srandom;
carryin = Srandom;
#10; // wait for 10 time unit period
if(in1 +in2 + carryin !=result) // self-checking logic. - - - » initial begin // initial block to display inputs and outputs
Serror("ERROR : Incorrect addition value returned\n"); Smonitor("time=%0t in0=%d in1=%d carryin=%d
end ~. Test fail reporting ! result=%d", Stime, in0, in1, carryin, result);
Sfinish; // Terminate simulation ! end
end -----------c-emc e s e m e e === ¢ ! endmodule: testbench_top

Testbench With Vectors and Self-Checking Example

 Testbench using multiple initial blocks and self-checking

“timescale 1ns/10ps // timeunit=1ns, precision=10ps

moc!ulg tes_,tbench_t.op; // Testbench module without ports |~ __ module fulladder(// Design Module (DUT)
logicinO, in1, carryin, ___--"7 . . .
logic[1:0] result; ~___----""""_ GBS Ioglc.a, b, cin,
_________ output logic sum, cout
fuIIadde‘r—D—UT(// instantiate design under test);
a(in0), logic p, g;
b(in1), assignp=a”"b;
.cin(carryin), assighng=a & b;
.cout(result[1]), assign sum = p A cin;
-sum{result[0])); assign cout = q | (p & cin);
endmodule

initial begin // initial block to drive input values
repeat(10) begin
in0 = Srandom; //apply random stimulus
inl = Srandom;
carryin = Srandom;
#10; // wait for 10 time unit period
if(in1 +in2 + carryin !=result) // self-checking logic. - - - » initial begin // initial block to display inputs and outputs
Serror("ERROR : Incorrect addition value returned\n"); Smonitor("time=%0t in0=%d in1=%d carryin=%d
end ~. Test fail reporting ! result=%d", Stime, in0, in1, carryin, result);
Sfinish; // Terminate simulation ! end
end -----------c-emc e s e m e e === ¢ ! endmodule: testbench_top

Testbench With Vectors and Self-Checking

L Write testvectors file which includes : inputs and expected output values

Generate clock for assigning inputs, reading outputs

Read testvectors file into array using initial procedural block

Assign inputs, get expected outputs from DUT using always procedural block

Compare outputs to expected outputs and report errors using always procedural block

SystemVerilog Top Testbench Module (no primary ports)

Monitor inputs, output signals. Self-checking

Extract output bits and senditto using expected value from vector file
comparator in testbench

always block-2
(Monitor &
Comparator)

Store input and
output in a vector
array

Monitor
output ports

Monitor
input ports

E] a|ways

block HIUg Ll ™ Dump Waveform /
(read file) (Driver) i : e timing diagram

testvectors.txt Extract input bits FullAdde Visualize & debug
file Drive to input ports Waveform using
Clock can be generated ma I

waveform viewer
i > reset
using always block » Clock rese

(o V]

Testbench With Vectors and Self-Checking

) Clock Period .) Clock Period .
A 2 | I SETUP
HOLD
le» -3
MARGIN | I I« MARGIN
Assign Check and Comparz Assign inputs Check and Compare
Inputs outputs to expecte after some delay outputs to expected

before next clock edge after rising edge clock before next clock edge

Approach A
Approach A Approach B
 Testbench clock used to synchronize 1/O 1 Testbench clock used to synchronize 1/0
= Same Clock can be used for DUT clock = Same Clock can be used for DUT clock
[Assign inputs on rising edge Assign inputs after hold margin (real world
usecase)

(d Compare outputs with expected outputs

on falling edge d Compare outputs with expected outputs

on falling edge
10

Testbench With Vectors and Self-Checking

(J Step 1: Create test vectors file : test_vectors.txt
= Contains input vectors and expected output (<inputs>_<expected outputs>)

110 01
100_10
101_01
001 10
000_00
111 11

- inputs a=1, b=1, cin=0 and expected outputs sum=0, cout=1

Testbench With Vectors and Self-Checking
(J Step 2 : Instantiate DUT and Generate Clock

“timescale 1ns/10ps // timeunit=1ns, precision=10ps
module testbench_top; // Testbench module without ports
logic clk, reset, in0, inl1, carryin; // local variables to connect to DUT ports
logic[1:0] result, expected val;
logic[4:0] test_vectors[10000:0]; // array of test vectors
logic[31:0] test_vector_idx, errors; // index for test vector and error counter

fulladder DUT(//instantiate design under test
.a(in0),

.b(inl),

.cin(carryin),

.cout(result[1]),

.sum(result[0]));

// generate clock with 10ns period

always // no sensitivity hence always executes
begin

clk=1;

#5; // wait for 5ns

clk =0;

#5; // 10ns period end

end

Testbench With Vectors and Self-Checking

(] Step 2 : Read test vectors into array and apply reset sequence

// at start of test, load vectors, apply and wait for reset
// Note: Sreadmembh reads testvector files written in hexadecimal
initial begin
// read input and expected outputs from testvectors.txt file
Sreadmemb(“testvectors.txt", test_vectors);

// initialize test vector index
test_vector_idx =0;

// initialize error counter
errors = 0;

// Apply reset and wait for rest to end

reset=1;
#38;
reset = 0;

end

13

Testbench With Vectors and Self-Checking
(] Step 3 : Assign inputs and expected outputs

// Apply test vectors to inputs at rising edge of clock after some delay
always@(posedge clk) begin
#1; // wait for some delay after rising edge of clk

// apply test vectors to input and store expected outputs to a local variable

{a, b, cin, expected_val} = test_vectors[test_vector_idx];
end

= Apply inputs with some delay (1ns) after rising edge of clock
= This is important Inputs should not change at the same time with clock

= |deal circuits (HDL code) are immune, but real circuits (netlists) may suffer from hold violations.

Testbench With Vectors and Self-Checking
(] Step 4 : Compare outputs with expected outputs

// Compare results on failing edge of the clock
always@(negedge clk) begin
if ('reset) begin // skip during reset
if (result == expected_val) begin
Sdisplay("Error: inputs = %b", {a, b, cin});
Sdisplay(" outputs = %b (%b expected)", result, expected_val);
errors = errors + 1; // increment error count
end
end

// increment array index and read next test vector
vectornum = vectornum + 1;
if(testvectors[vectornum] === 4'bx) begin
Sdisplay("%d tests completed with %d errors", test_vector_idx, errors);
Sfinish; // terminate simulation
end
end
endmodule

Why Verification Signoff is Difficult ?

J How long would it take to test a two input 32-bit adder?

» |n such an adder there are 64 bit inputs = 2%4 possible inputs
= That makes around 1.85 10%° possibilities

= |f one input tested in 1ns, then 109 inputs per second can be tested
e or 8.64 x 10* inputs per day

* or 3.15x 107 inputs per year
= Considering above mentioned it will need 58.5 years to test all possibilities

] Directed testing is not feasible for all circuits, we need alternatives
= Verify in simulation combination of directed test and corner cases
= Complement with Assertion Based Formal verification methods

= And also use hardware accelerator platforms such as FPGA based, Mentor Veloce, Cadence
Pallidium and to accelerate simulation

SystemVerilog System Tasks and Functions

SystemVerilog System Tasks and Functions

d SystemVerilog includes pre-defined tasks and functions for below mentioned usage:
= Simulation time and Simulation control

Standard output display and File I/O

Timescale

Data type conversions

Timingchecks

Waveform dumping

 System tasks and function names begin with a dollar sign ($).

d System tasks and functions are not synthesizable
= Many of the system tasks and functions used in testbench for simulation purpose
= Synthesis compiler tools ignores system functions even if included in synthesizable RTL model

 System tasks that extract data, like Smonitor needs to be in an initial or always block

SystemVerilog System Tasks and Functions

Simulation simulation control tasks allow user to either stop or Sfinish, Sstop, Sreset,Sfatal
Control reset or quit simulation
Standard 1/O To display signal and variable values as text on the Sdisplay, Sstrobe, Smonitor, Swrite
Display screen during simulation.
File1/O To write signal and variable values in a file and read Sfopen, Sfclose, $Sfdisplay,

content from a file Sfstrobe, Sfmonitor, Sfwrite,

Sreadmemb, Sreadmemh

Timescale To print timescale and timeformat for simulation Stimeformat, Sprinttimescale

Simulation Time To return current simulation time either as a 64-bit Stime, Sstime, Srealtime
integer, a 32-bit integer, and a real number

Timing Checks Tasks for timing checks and to support timing Ssetup, Shold, Speriod, Sskew,
verification during simulation, i.e. dynamic timing Swidth, Snochange, Srecovery,
analysis Ssetuphold

Data type To convert from one data type to another Sitor, Srtoi, Sbitstoreal, Srealtobits

Conversion

19

System Tasks and Functions

Waveform To dump all variable changes to a simulation viewer Sdumpfile, Sdumpvar, Sdumpon,
dumping Sdumpoff, Sdumpall

Assertion severity To specify messages with severity Serror, Swarning, Sinfo, Sfatal,
control Sassertoff, Sassertkill

Random number To generate random numbers Srandom, Surandom,

Surandom_range, $srandom

20

Sfinish and Sstop

[Sfinish and Sstop
= Sfinish when invoked it exits the simulator and gives control back to the operating system

= Sstop when invoked it suspends simulation, puts execution in interactive mode where user
can enter commands to further advance simulation

O Syntax :

= Sfinish[(N)] and Sstop[(N)] where N can take value of 0,1,2

= argument(N) is optional

= if argument (N) is provided then diagnostic message will be printed on screen
= default value of N is 1 for $stop and 0 for Sfinish if not specified

0 No Message
1 Print simulation time and location

2 Print simulation time, location, memory consumption and CPU time

21

Sfinish and Sstop Example

module clock_generator; Simulation output if using Sfinish
logic clock; at time=0 value of clock=0
initial begin at time=10 value of clock=1
clock = 0; at time=20 value of clock=0
Smonitor("at time=%g value of clock=%b", Stime, clock); at time=30 value of clock=1
#41ns; at time=40 value of clock=0
Sfinish(1); Sfinish called from file "testbench.sv", line 11.
end Sfinish at simulation time 41
always@(clock) Time: 41 ns
#10ns clock <= Iclock; Done
endmodule Note: $finish quits simulation and control goes back to

operating system

module clock _generator;

logic clock; Simulation output if using Sstop
initial begin at time=0 value of clock=0
clock = 0; at time=10 value of clock=1
Smonitor("at time=%g value of clock=%b", Stime, clock); at time=20 value of clock=0
#41ns; at time=30 value of clock=1
Sstop(1); at time=40 value of clock=0
end Sstop at time 41 Scope: test1 File: testbench.sv Line: 11
always@(clock) vsim>
#10ns clock <= Iclock; Note: $stop suspended simulation and simulator puts in

endmodule interactive mode by returning to command line vsim>

Sdisplay and Swrite
O Sdisplay and Swrite :

= Sdisplay and Swrite are similar to print function in the ANSI C language, when invoked

immediately prints its arguments
Arguments are printed in the same order it is specified.

Both these tasks gets executed in the active region of execution
Swrite and Sdisplay tasks work in the same way and the only difference is that the Sdisplay

task adds a new line character at the end of the output, while the Swrite task does not

needed. It is known as format specification.
= Example Usage:

module test_display task; module test_write_task;
logic a, b; %D is a binary format logic a, b;
initial begin specifier hence display initial begin
a=1; prints binary value of a=1;
b=0; ‘a’ and ‘b’ 1 b=0;
Sdisplay(“Value of a is: %b", a) ; Swrite(“Value of a is: %b", a) ;
Sdisplay(“Value of b is: %b", b) ; Swrite(“Value of b is: %b", b) ;
end end
endmodule endmodule

Both tasks have a special character (%) to indicate that the information about signal value is

Simulation output if using Sdisplay
Valueof ais: 1
Value of bis: 0

Simulation uutput if using Swrite
Value of ais: 1Value of b is: O

Note: Swrite does not add newline
character by default unlike $Sdisplay

When does Smonitor and Sdisplay execute ?

From previous
time slot

Update to
|EEE1800-2005
Standard

A time slot is
divided into a set of
17 ordered regions
(9 Verilog & 8 PLI)

Old Verilog
event region

New SystemVerilog
event region

New SV
regions for PLI
commands

|Current time slot |

Region for new .
SV commands $d|5p|ay executes

Preponed

I - in ACTIVE region

-1—| Reactive I"\-.\
Y
. Re-Inactive

— | Evaluate RHS of NBAs |
| T{Continuous as signments |

\'\1 $display command |

| | Eval inputs & update
\l outputs of primitives
\:\ #0 blocking assignmemsl

| |Update LHS of NBAs |

SV commands

'\I
::j Regions for new
|~

[Smonitor command |

'PLI

Postponed

{l—l—b time slot

/I/{ $strobe command|__ ---~

mar in postponed
TFonhext

region

Figure 4 - SystemVerilog-2005 event regions with PLI regions shown

Credit to : Clifford E. Cummings (sunburst design), Arturo Salz (Synopsys)

Smonitor executes

Smonitor and Sstrobe

 Smonitor and Sstrobe :
= Smonitor statement monitors the values of variables throughout the simulation
o only displays the value of a variable or a signal whenever its value changes
o whereas Sdisplay and Swrite only prints arguments once when invoked
Only one Smonitor process can run at a time.

o If multiple Smonitor statements specified, then current Smonitor process will get canceled and get
replaced by new Smonitor process.

Smonitor and Sstrobe gets executed in the postponed region of execution !
Smonitor and Sstrobe tasks works in the same way and the only difference is :

o Sstrobe displays the value of a variable or a signal at the end of the current time step and
o Sstrobe only prints value of variables once.

Arguments are printed in the same order it is specified.
Has a special character (%) to indicate that the information about signal value is needed.
o Itis known as format specification.

J Example Syntax :
= Sstrobe("At time=%g using strobe value of sum = %0h",Stime, data);
= Smonitor("At time=%g using monitor value of p = %0h",Stime, data);

Example for Sdisplay, Swrite, Sstrobe, Smonitor using non-blocking statement

module test1(); Simulation Output
reg [7:0] p; At time=5 using display value of p = 16
initial begin At time=5 using write value of p = 16

p =8'h16;
#5 p <= 8’h22; // since non-blocking, LHS is updated in INACTIVE region
Sdisplay("\t At time=%g using display value of p = %0h",Stime, p);

At time=5 using monitor value of p =22
At time=5 using strobe value of p = 22

Swrite("\t At time=%g using write value of p = %0h\n",Stime, p); At time=10 using monitor value of p = 44
Sstrobe("\t At time=%g using strobe value of p = %0h",Stime, p); At time=15 using monitor value of p = 66
Smonitor("\t At time=%g using monitor value of p = %0h",Stime, p);

#5 p <= 8'hd4;

#5 p <= 8'h66; %h is a hexadecimal format

end specifier hence Smonitor prints

endmodule

hexadecimal value for ‘p’

(] Note:

@5, Sdisplay and Swrite prints value of variable ‘p’ as 16 since both tasks executes in active region of NBA
Swrite requires explicit newline character (\n) to be specified to have next print in next line

@5, Smonitor and Sstrobe prints value of variable ‘p’ as 22 since both tasks executes in postponed region of
NBA (non blocking assignment)

@5, Sstrobe only prints value of ‘p’ once which is 22

Smonitor prints value of ‘p’ each time it changed hence it has multiple prints for values 22, 44, 66 at
timeunits @5, @10 and @15 respectively

Example for Sdisplay, Swrite, Sstrobe, Smonitor using blocking statement

module test2(); Simulation Output
reg [7:0] p; At time=5 using display value of p = 22
initial begin

At time=5 using write value of p = 22
At time=5 using monitor value of p =22
At time=5 using strobe value of p = 22

p = 8'hl6;
#5 p = 8’h22; // since blocking, LHS is updated in ACTIVE region
Sdisplay("\t At time=%g using display value of p = %0h",Stime, p);

Swrite("\t At time=%g using write value of p = %0h\n",$time, p); At time=10 using monitor value of p = 44
Sstrobe("\t At time=%g using strobe value of p = %0h",Stime, p); At time=15 using monitor value of p = 77
Smonitor("\t At time=%g using monitor value of p = %0h",Stime, p);

#5 p = 8'h44;

, One blocking with value 66 and other is non-blocking
p <=8h77,; . . i . .
with value 77. Since Smonitor executes in non-active
end region, it will print overridden value of 77 for ‘p’
endmodule

H5 p = 8'h66;:|. At same time unit, variable ‘p’ has two assignment.

(] Note:

= Changing non-blocking assignment to blocking assignment, Sdisplay and Swrite at timeunit @5 prints value
of variable ‘p’ as 22 instead of 16.

= @15, Smonitor prints value of ‘p’ as 77 instead of 66, since in same timeunit there is a non-blocking
assignment statement with value 77 assigned to ‘p” and 77 will be assigned in non-active region of NBA

* This is due Smonitor executes in non-active region of NBA

Format Specifier and Escape Characters

1 Format Specifiers for Sdisplay, Swrite, Smonitor, Sstrobe
= Required to print variables and signals in one of the format as shown in table below
= Default format specifier is %d if not specified

L Sdisplay, Swrite, Smonitor, Sstrobe can also have escape characters

%d or %D . Characters

Decimal format

%b or %B Binary format \t _II_let:NIlne
a
0, 0, 1
%h or %H Hexadecimal format \” Double quote
%0 or %0 Octal format \\ Backslash
%c or %C ASCII character format
%V or %V Net signal strength
%m or %M Hierarchical name
%s or %S As a string
%t or %T Current time format

%e or %f or %g or %G Real format
29

Stime, Sstime and Srealtime

1 Stime, Sstime and Srealtime :
= When invoked, it returns current simulation time
It returns 64-bit unsigned value, rounded to the nearest unit
Sstime returns a 32-bit unsigned value, truncating large time values.
Srealtime returns a real number
These functions have no inputs

J Example Syntax :

integer current_timel ;
curr_timel = Stime ;

integer curr_time2 ;
curr_time2 = Sstime ;

real curr_time3;
curr_time3 = Srealtime ;

Sfatal, Serror, Swarning, Sinfo
] Sfatal :

= Run-time fatal error, which terminates the simulation with an error code.

= First argument passed to Sfatal shall be consistent with the corresponding argument to the
Verilog Sfinish system task, which sets the level of diagnostic information reported by the tool.

= Calling Sfatal results in an implicit call to $finish.

] Serror:

= When invoked it will generate run-time error message

O Swarning:

= When invoked it will generate run-time warning, which can be suppressed in a tool-specific
manner.

 Sinfo:
= Similar to Sdisplay

SystemVerilog Compiler Directives

SystemVerilog Compiler Directive

J Compiler directive may be used to control the compilation of a SystemVerilog
description.

= The grave accent mark, ', denotes a compiler directive.

= Adirective is effective from the point at which it is declared to the point at which another
directive overrides it, even across file boundaries.

= Compiler directives may appear anywhere in the source description, but it is recommended
that they appear outside a module declaration.

(J Some of the compiler directives supported in SystemVerilog are listed below :
" ‘include
= ‘define
= ‘ifdef, "else, ‘ifndef, ‘'undef
" ‘timescale
" ‘import
= ‘defaultnetype
" ‘nounconnected_drive and ‘unconnected_drive

‘include directive

d “include inserts the contents of a specified file into a file in which it was called.

= Compilation proceeds as though the contents of the included source file appear in place of the
‘include command

* File name should be given in quotation marks (") and
= File name can be given using full or relative path

‘include "half_adder.svs _ Intent toinclude half o module half _adder(Filename :
module full_adder(~ adder code which is input logic a, b, full_adder.sv
— defined in separate file .

input logic a, b, cin, output logic sum, cout);

output logic sum, cout); Filename : compiler and #1 (cout, a, b);

logic w1, w2, w3; full_adder.sv will treat xor #2 (sum, a, b);

half_adder hal (a, b, w1, w2); LHS code as | endmodule: half _adder

half _adder ha2(w2, cin, w3, sum); RHS

or #1 (cout, wl, w3); | module full_adder(
endmodule: half_adder input logic a, b, cin,

output logic sum, cout);

module half _adder(Filename : logic w1, w2, w3;

input logic a, b, half_adder.sv half_adder hal (a, b, w1, w2);

output logic sum, cout); half_adder ha2(w2, cin, w3, sum);

and #1 (cout, a, b); or #1 (cout, w1, w3);

xor #2 (sum, a, b); endmodule: half_adder

endmodule: half _adder

‘ifdef, "else, ‘ifndef, "endif directive

 “ifdef, “else, “ifndef can be used to decide which lines of Verilog code should be included
for the compilation

= |f macro name after ifdef is defined, then all lines between “ifdef and “else will be compiled.
Otherwise, only lines between “else and “endif will be compiled.

» “ifndef is same as ‘ifdef except it evaluates true if macro after it is not defined

“define behavioral ~ < Since behavioral compiler will module full_adder(
RN LI el choose behavioral . . .
input logic a, b, cin, compilerwill | i pehavioral macro, OUtPUL logic sum, cout);
output logic sum, cout ~ ncludelineswithin s gefined ___-» assign {cout, sum}=a +b + cin;
‘ifdef body L ----"7

endmodule: full_adder

);

“ifdef behavioral

- -
-
-
=
-
-
-
-
-
-

assign {cout, sum}=a+b +cin; module full_adder(
“else compiler will input logic a, b, cin,

logic w0, wl, w2; choose gatelevel output logic sum, cout);

xor x0(wO0, b, a); . _ implementation logic w0, wl, w2;

if behavioral if behavioral macro

and a0(w1, b, a); macros was not is not defined | XOf x0(wO, b, a);

and al(w2, w0, cin); defined, compiler —===-==7"7""" and aO(w1, b, a);

or rO(cout, w2, wl); Willinclude lines and al(w2, w0, cin);

. within “else body

xor x1(sum, w0, cin); or rO(cout, w2, wl);

“endif xor x1(sum, w0, cin);

endmodule: full_adder endmodule: full_adder

"define and

‘undef directive

1 “define directive is used to define the text macros and constants
= ‘define <macro func name> (ARGS) is used to define a macro function that can generate RTL

based on ARGS

= "define <constant name> <optional value> is used to declare a synthesis-time constant

 “undef directive is used to remove the definition of text macros and constants created by

‘define directive

-
-
=
—
=
-

module memory(
input logic [ADDR_BITS - 1:0] address,

output logic [LOG2('NUM_WORDS) - 1:0] data
);

// memory model implementation

endmodule: memory

filename : constants.vh
desthe | ifndef CONSTANTS

content of “define CONSTANTS

_CO”Stants-Vh “define ADDR_BITS 16

1 MEMOTYSY - ~define NUM_WORDS 32

—
— -
=
- -

________________ 'LOG2 (x<=2)?1:\

file

———————— *“define LOG2(x) \

expands (x<=4)?2:\

to the macro _)

defined in (X <= 8) ?3: \

constants.vh (x<=16)?4:\
(x<=32)?5:\
(x<=64)7?6:\
-1

‘endif

“timescale directive

1 “timescale directive tells simulator what #delay specified within a module should mean
in terms of time. It has two component(s)

= Time unit and Time precision

J Syntax
“timescale <timeunit>/<timeprecision>

J Example :
“‘timescale 1ns/1ns
“timescale 1ns/1ps
“timescale 10ns/1ns

J Note:
= The simulation time and delay values are measured using time unit.
= The precision is how delay values are rounded before being used in simulation.
= Time precision value has to be equal to or smaller than time unit value

“timescale directive

1 Time unit has two parts :
= Magnitude and Unit
* |n ‘timescale 10ns/1ns specification, 10 is the magnitude and ns is the unit of time

] Legal values for magnitude are : 1, 10, 100

 Legal Time Unit Values : d Example Syntax
Seconds “timescale 1ns/1ns Legal syntax
ms milliseconds “timescale 10ns/1ns Legal syntax
us Microseconds “timescale 100ns/1ns Legal syntax
ns Nanoseconds “timescale 1000ns/1ns illegal syntax since
ps Picoseconds magnitude value 1000 is
fs femtoseconds not a legal value
“timescale 1ns/10ns illegal syntax since

timeprecision > timeunit

“timescale 1us/10ns Legal syntax
38

(J Rule : Multiply each #delay value in module by timeunit and then
number based of time precision

Example A

“timescale 10ns/10ns
module t_directive();
reg enable;
initial begin
enable = 0;
#4.55; // will result in 50ns delay
enable =1;
end
endmodule

O Example A :

= #4.55 x 10ns timeunit = 45.5ns

“timescale directive

Example B

“timescale 10ns/1ns
module t_directive();
reg enable;
initial begin
enable = 0;
#4.55; // will result in 46ns delay
enable = 1;
end
endmodule

round the result to the nearest

Example C

‘timescale 1ns/1ns
module t_directive();
reg enable;
initial begin
enable = 0;
#4.55; // will result in 5ns delay
enable =1;
end
endmodule

= Simulator will round 45ns to closet integer multiple of 10ns timeprecision resulting in 50ns

O ExampleB:

= #4.55 x 10ns timeunit = 45.5ns

= Simulator will round 45.5ns to closet integer multiple of 1ns timeprecision resulting in 46ns

O ExampleC:

= #4.55 x 10ns timeunit = 4.55ns

= Simulator will round 4.55ns to closet integer multiple of 1ns timeprecision resulting in 5ns

“timescale directive

(d “timescale directive can be defined in multiple SystemVerilog source files

1 “timescale directive is not bound to specific module. It is effective until next “timescale
directive is encountered

= SystemVerilog source file without a "timescale directive is dependent on the order in which the
file is compiled relative to previous files and will inherit timescale from last file which has
timescale declared.

1 Example : (File_A.sv compiled first, then File_B.sv and then File_C.sv)

1 Compilation order 2 Compilation Order 3
File_A.sv » File_B.sv » File_C.sv
‘timescale 10ns/1ns ~ - //No timescale directive declared ‘timescale 1ns/1ns
module A(); RS module B(); module C();
reg enable; REN < reg reset; reg select;
initial begin S | initial begin initial begin
enable = 0; S o reset = 0; select = 0;
#4.55; //will result in 46ns delay T« #3; //will result in 30ns delay #4; [/will result in 4ns delay
enable = 1; reset = 1; select = 1;
end end end
endmodule endmodule endmodule

“timescale 10ns/1ns from File_A.sv is in effect for module B
since No timescale directive declared locally in File_B.sv

“timescale directive

J Changing SystemVerilog File_B.sv order of compilation below will result in different
simulation behavior for module B when compared to previous compilation order

1 Compilation order 2 Compilation Order 3
File_A.sv » File_C.sv » File_B.sv
“timescale 10ns/1ns ‘timescale 1ns/1ns ~ o //No timescale directive declared
module A(); module C(); RS - module B();
reg enable; reg select; N reg reset;
initial begin initial begin RN o initial begin
enable = 0; select = 0; TS reset = 0;
#4.55; //will result in 46ns delay #4; //will result in 4ns delay Ta #3; //will result in 3ns delay
enable = 1; select =1; reset = 1;
end end end
endmodule endmodule endmodule

“timescale 1ns/1ns from File_C.sv is in effect for module B
since No timescale directive declared locally in File_B.sv

41

timeprecision and timeunit directive

1 SystemVerilog provides timeunit and timeprecision to specify time unit and precision
within a module
= Binds the time unit and precision information directly to a module, interface or program block
= Resolves the ambiguity and file order dependency that exist

= The timeunit and timeprecision statements must be specified immediately after the module,
interface, or program declaration, before any other declarations or statements.

J Syntax
timeunit <value>;
timeprecision <value>;

J Example : module adder (input wire [63:0] a, b,
output reg [63:0] sum,
output reg carry);
timeunit 1ns;
timeprecision 10ps;

endmodule

Precedence in case of mixed declaration of time precision and time unit

// directive takes precedence over external
“timescale 1ps/1ps

// external time unit and precision
‘timeunit 1ns;
“timeprecision 1ns;

module FSM (...);

module my_chip (...); timeunit 1ns; // local units take priority over directive

timeprecision 1ps; // local precision (priority over external)
always @(state) begin

always @(posedge data_request) begin
#2.5 send_packet; // uses external units & local precision
#3.75us check_crc; // specified inline units take precedence
end

task send_packet();
endtask
task check_crc();

endtask

endmodule Credit : Stuart Sutherland

#1.2 case (state) // uses local units & external precision
WAIT: #20ps ...; // specificied units take precedence

end

endmodule Credit : Stuart Sutherland

Time unit and precision search order

1 SystemVerilog compiler/simulator will derive time unit and precision in below
mentioned specific search order :

1. if specified time unit specified as part of the time value.
2. else if local time unit and precision specified in the module
3.else if in case of nested module, use the time unit and precision in parent module

4. else if specified, use the ‘timescale time unit and precision in effect when the module was
compiled.

5. else if specified, use the time unit and precision defined in compilation scope

6. else use the simulator’s default time unit and precision

Simulator, Logic Simulation, Waveform, EDA Tools

Simulator

J Simulator role is approximating reality. Design realized in virtual environment !
= Simulator creates an artificial universe that mimics the future real circuit design

= |t lets the designer interact with the design before it is manufactured, and enables designer to correct
flaws and problem earlier

o Simulator takes RTL code and simulates design using stimulus provided in testbench code
o Generates waveforms to provide approximate behavior of design prior to manufacturing.

= Many physical characteristics are simplified or even ignored to ease the simulation task

o Four state digital simulator assumes only possible values of signals as 0,1,X,Z,

o In the physical/analog world, the signal value can have infinite value since it is continuous function
of voltage and current over a copper wire.

= Simulator does not correct automatically incorrect description of the design written in HDL

= |tis the responsibility of verification engineer, not the simulator, to apply legal set of stimulus to design
under test based on real world usecase.

= Simulator is not a static tool ! It requires stimulus to mimic design behavior and provide results

Logic Simulation

J Two types of Logic simulation

= Event driven
o RTL simulation, Verilog/VHDL, slower and more accurate

= Cycle based simulation
o Faster and lesser accurate then event driven simulation

Event Driven Simulation

(J Main function of an event driven simulator is to detect events, and schedule gate
simulations in response to them.

= An event is defined to be a change in the value of a net/signal
= |f no events occur, implying that there are no net changes, then no gates will be simulated.

= Event driven simulation is designed to remove unwanted gate simulations to achieve higher
simulation performance of a circuit described using HDL

Event Driven Simulation (Combinational Circuit)

1 In case of combinational circuit :

= Event driven simulator evaluates gates only when there is a change to its input net/signal

value

= No evaluation of gates if there are no events

E = Gate Evaluated

Event Driven Simulation Results Table
N = Gate Not Evaluated

o~ L, nmnulunmlmmmmmm

P K
M

> o O ns

R—1E H
Q 2 ns
G5 N 4 ns

™ e L
e 6 ns
8 ns

Combinational Circuit

0

O R R K

0

o » O O

0

L = O O

0

L = O O

0

A T

0

N =

0 0O
0 0 1
10 011
1 1

i1 111
bt

0\1 1

E
N
N
E

Note : Even though output of XOR gate G4 did not change from time 4 ns to 6 ns, gate G4 is still evaluated by
simulator since G4 gate input signal K and H value changed from O to 1. This is because all simulator knows
that is a logic gate with 2 input and 1 output, whether it is a 2 input AND gate or XOR gate, it does know.

49

Event Driven Simulation (Sequential Circuit)

1 In case of sequential circuit :

= Event driven simulation evaluates sequential element (such as flipflop) only when there is
change to its clock signal

P —
G1 5
Q= >
G4 M
G2 D o—w
7 N G6
. G5 > 94—
Input signal N propagatesto 1_ L |_
G3
output W only on clock event u— ek
Sequential Circuit
nmnulmnmlmm, mlmm, EBEIEE
O ns O 0 0O EO 0 OEE E
2nleOOllOOlOilO OEENENEN
1 1
4ns 1 000 110010121 1N N N N N E
6n51111111110511 11E E N E E N

Event Driven Simulation Results Table
E = Gate Evaluated N = Gate Not Evaluated

50

Two Phase Event Driven Simulation Algorithm

O Inputs which has change in value, input processor
adds these events to event queue

[For each event in event queue, all fan out gates
are placed in gate queue by event processor

(J Gate processor evaluates each gate in gate queue
and propagates input signal to its output after
unit delay

[Figure illustrates several important points about
event driven simulation.
= G2 is simulated twice.

= There are two events for the net Q, one which changes
the value from zero to one and the second which
changes Q from one to zero. Thus the value of Q changes
briefly from zero to one and back to zero.

0Q

B 0 c

Evaluation for change in value for (A,B)
from (0,0) to (1,1)

Event Gate
Qlueue Queue
A G1
Input 1 | Event .| Gate
e e
Processor B Processor a2 Processor
1
Evem
Queue Gate Event
[Queue Queus
0 Event Gate Q
y o L G2 >)
Q Processor Processor 0
1

Two Phase Event Driven Simulation Algorithm

s+ Each execution of the Event Processor
subroutine defines one unit of simulated time.

¢ Intermediate outputs can be stored after each
execution of gate in gate queue

¢ The first execution of the Event Processor is
designated as simulated time zero.

> Simulated time increases by one for each
subsequent execution of the Event Processor

Source and Credit : Writing testbenches : Functional Validation of HDL Models book, Janick Bergeron

Cycle-Based Simulation

O Cycle based simulator evaluates logic between state elements and/or ports in the single shot.
= Cycle-based simulators collapse combinatorial logic into equations

= When the clock input rises, the value of all flipflops are updated using the input value returned by the
pre-compiled combinatorial input functions

O Cycle-based simulators have no notion of time within a clock cycle.
= All timing and delay information is lost.

= Cycle based simulators assume that entire design meets the setup and hold requirements of all the flip
flops

(d Each logic element is evaluated only once per cycle
= Significantly increase the speed of execution, but this can lead to simulation errors.

1 Cycle-based simulators assume that the active clock edge is the only significant event in the
changing the state of the design.

= All other inputs are assumed to be perfectly synchronous with the active clock edge
= Cycle-based simulators only function on synchronous logic

Cycle-Based Simulation Example

S1 |

S2 |

S3 |

Q2 [

The event (rising edge) on the clock input causes the execution
of the description of the flip-flop models, changing the output
value of QI to *1" and of Q2 to *(, after a delay of 1 ns.

The event on QI causes the description of the AND gate to exe-
cute, changing the output S1 to ‘1", after a delay of 2 ns.

The event on S1 causes the description of the OR gate to exe-
cute, changing the output S2 to *1’, after a delay of 1.5 ns.

The event on S2 causes the description of the XOR gate to exe-
cute, changing the output S3 to 1" after a delay of 3 ns.

The next rising edge on the clock causes the description of the
flip-flops to execute, QI remaining unchanged but Q2 changing
back to ‘I', after a delay of | ns.

1.

When the circuit description is compiled, all combinatorial
functions are collapsed into a single expression that can be used
to determine all flip-flop input values based on the current state
of the fan-in flip-flops.

For example, the combinatorial function between Q1 and Q2
would be compiled from the following initial description:

S1=01¢& 'l

§2=81 | “0"

S3 =82 * 0
into this final single expression

S3 = Q1

The cycle-based simulation view of the compiled circuit is
shown in Figure 2-5.

Clock

2. During simulation, whenever the clock input rises, the value of

all flip-flops are updated using the input value returned by the
pre-compiled combinatorial input functions.

Source and Credit : Writing testbenches : Functional Validation of HDL Models book, Janick Bergeron

53

What is a Waveform ?

(d Waveform is a plot of signal values over period of time

gm| Wave - Defauit

St1 ‘ |
i

400 ps

Mow

Waveform Viewer

J Waveform viewer is a most common verification tool used in conjunction with
simulator

= |t allows users visualize the transition of multiple signal over time, and their relationship with
other signal transitions.

= Each simulator’s graphical interface has native waveform viewer built into it.

= Each simulator generates waveform / trace file in its own proprietary format

o There is a common trace format VCD which each simulator can generated however it is a large and
not very optimal compared to the format which each simulator generates.

= Synopsys Verdi is most commonly used for waveform debugging and it works with all major
simulators (VCS, VSIM, NSCIM).

o Each simulator can interact with Verdi to eventually generate fsdb waveform file which can be
viewed using Verdi nWave waveform viewer.

Waveform Viewer

(J Waveform viewer is frequently used to debug simulation during RTL design and
verification phase

= \Waveform viewer can be used to inspect the behavior of the code is as expected
= Can be used interactively while simulation is being run or once simulation has completed

= Can play back the events that occurred during RTL and gate level simulation that were
recorded in some trace file

= Recording signal trace information while simulation is running, significantly reduces the
performance of the simulator

= Typically all signals are recording during RTL and testbench development phase.
* Later, limited traces are recorded and waveforms are only generated for a failure test

Name

Clock

el
AddSub

EEEEEAGE

RTL Design
Code

Simulator Event ‘ Waveform

Database file Viewer

Testbench

Code Waveform Viewing as Post-processing 56

EDA Vendors

J Three major EDA Vendors in field of ASIC RTL Design and Verification

= Cadence Design Systems
= Mentor Graphics

= Synopsys
ASIC EDA Vendors Front-End CAD Tools
Ment
RTL Simulat |] ModelSim/ | }
imulator { L IUS / NCSIM | QuestaSim | VCS

Property Checking — Jasper *[Oin ~[VC-Formal }

Simulation Accelerator { — Palladium *[Veloce — Zebu

Waveform Debug —{ SimVision Waveform } — DVE & Verdi

Viewer / wif

Static Timing Analysis -{ ~[Tempus — PrimeTime

JasperGold | Questa Sovelass
SuperlLint | Autocheck PYe

RTL Linting / Rule Checks

57

ModelSim Compilation and Running Simulation Flow

Step 1 : Create Work Library vlib work

Step 2 : Map work to physical directory vmap work SHOME/worklib

Step 3 : Compile design files vlog —sv —work work full _adder.sv half_adder.sv
Step 4 : Compile testbench files vlog —sv —work work full_adder_testbench.sv
Step 5 : Elaborate and Run Simulation vsim worlc.full_adder_testbench

Note :

= vlog is a compiler tool which compiles HDL source files

= -sv switch instructs vlog to compile source files as SystemVerilog code and follow SystemVerilog LRM
= |f -sv switch is not passed to simulator, then vlog will treate source files as Verilog 2001 code format
= vsim does elaboration of code first and then runs simulation.

= End of vsim command waveform file with extension .wlf is generated

= All compile directives such as “define, “ifdef, ‘timescale, etc are considered during vlog stage

= SystemVerilog parameter constants are considered during vsim elaboration stage

= Connections between module ports is done during vsim elaboration stage

	Slide 1: Testbench, System Tasks/Functions, Compiler directives, Simulation, EDA Tools
	Slide 2: Testbench
	Slide 3: Why Testbench ?
	Slide 4: What is a Testbench ?
	Slide 5: Basic Testbench Without Self-Checking
	Slide 6: Basic Testbench With Self-Checking
	Slide 7: Testbench With Self-Checking Example
	Slide 8: Testbench With Vectors and Self-Checking Example
	Slide 9: Testbench With Vectors and Self-Checking
	Slide 10: Testbench With Vectors and Self-Checking
	Slide 11: Testbench With Vectors and Self-Checking
	Slide 12: Testbench With Vectors and Self-Checking
	Slide 13: Testbench With Vectors and Self-Checking
	Slide 14: Testbench With Vectors and Self-Checking
	Slide 15: Testbench With Vectors and Self-Checking
	Slide 16: Why Verification Signoff is Difficult ?
	Slide 17: SystemVerilog System Tasks and Functions
	Slide 18: SystemVerilog System Tasks and Functions
	Slide 19: SystemVerilog System Tasks and Functions
	Slide 20: System Tasks and Functions
	Slide 21: $finish and $stop
	Slide 22: $finish and $stop Example
	Slide 24: $display and $write
	Slide 25: When does $monitor and $display execute ?
	Slide 26: $monitor and $strobe
	Slide 27: Example for $display, $write, $strobe, $monitor using non-blocking statement
	Slide 28: Example for $display, $write, $strobe, $monitor using blocking statement
	Slide 29: Format Specifier and Escape Characters
	Slide 30: $time, $stime and $realtime
	Slide 31: $fatal, $error, $warning, $info
	Slide 32: SystemVerilog Compiler Directives
	Slide 33: SystemVerilog Compiler Directive
	Slide 34: `include directive
	Slide 35: `ifdef, `else, `ifndef, `endif directive
	Slide 36: `define and `undef directive
	Slide 37: `timescale directive
	Slide 38: `timescale directive
	Slide 39: `timescale directive
	Slide 40: `timescale directive
	Slide 41: `timescale directive
	Slide 42: timeprecision and timeunit directive
	Slide 43: Precedence in case of mixed declaration of time precision and time unit
	Slide 44: Time unit and precision search order
	Slide 45: Simulator, Logic Simulation, Waveform, EDA Tools
	Slide 46: Simulator
	Slide 47: Logic Simulation
	Slide 48: Event Driven Simulation
	Slide 49: Event Driven Simulation (Combinational Circuit)
	Slide 50: Event Driven Simulation (Sequential Circuit)
	Slide 51: Two Phase Event Driven Simulation Algorithm
	Slide 52: Cycle-Based Simulation
	Slide 53: Cycle-Based Simulation Example
	Slide 54: What is a Waveform ?
	Slide 55: Waveform Viewer
	Slide 56: Waveform Viewer
	Slide 57: EDA Vendors
	Slide 58: ModelSim Compilation and Running Simulation Flow

