
Testbench, System Tasks/Functions, Compiler directives, Simulation,
EDA Tools

ECE-111

Vishal Karna

Testbench

2

Why Testbench ?
❑ SystemVerilog design RTL code is developed to specify a circuit, but :

▪ How do we know if the circuit works correctly as per the original intent ?

❑ Hardware generation by trial and error is costly!

❑ To avoid costly hardware generation re-spins :
▪ Perform functional verification of design code prior to actual hardware fabrication

▪ Functional verification is performed by developing testbench code

o Using event driven simulator and testbench code simulate design-under-test (DUT)

❑ In modern digital designs functional verification is one of the most complex and time
consuming stage of ASIC design flow
▪ Quality of hardware is dependent on completeness in verification !!

3

What is a Testbench ?
❑ Testbench is a SystemVerilog module which tests another module know as design-

under- test (DUT)

❑ Non-synthesizable code and it is not part of the final hardware generated
▪ Testbench is a SystemVerilog procedural block that executes only once

▪ It is used for simulation purpose only

❑ Types of testbench :
▪ Basic directed testbench without using advance SystemVerilog OOP constructs :

o Without self-checking, only stimulus generation for input signals of design

o With self-checking and stimulus generation using code specified within procedural block

o With self-checking and stimulus generated using input vector file

▪ Advance constraint random and coverage driven testbench using SystemVerilog OOP
constructs

Note : ECE-111 course will only cover basic directed testbench. Advance testbench using
SystemVerilog OOP constructs is out of the scope of this course.

4

Basic Testbench Without Self-Checking
❑ Testbench contains top SystemVerilog module without primary ports

❑ Instantiates the design-under-test (DUT)
▪ Inputs and outputs of the DUT are connected to the local variables in testbench

❑ Generates stimulus for all input signals using initial, always procedural blocks and blocking
statements (=)
▪ Clock generation logic using always procedural block and apply generated clock to DUT clock signal

▪ Applies series of values from one or more initial blocks to all input and inout signals of DUT

❑ Outputs are observed and compared against expected behavior by reviewing simulation
waveforms – This approach of ensuring correctness of design is cumbersome and error prone !

5

DUT
(RTL)
HDL

initial
block-1

initial
block-N

Dump Waveform /
timing diagram

Generate stimulus
to drive Input signals

SystemVerilog Top Testbench Module (no primary ports)

resetClock

Visualize & debug
Waveform using
waveform viewer

Clock can be generated
using always block

input
ports

input
ports

output
ports

Basic Testbench With Self-Checking
❑ Includes statements and code to perform self-checking

▪ Monitor input and output signals

▪ Compare outputs with expected values at each cycle or with respect to certain state of signals

▪ Alternatively, compare outputs with golden model developed using function/task/module

▪ Generate pass or failure message for each occurrence using simulator system tasks such as $display, $error

▪ With this approach functional failures of design are generated dynamically without relying for exhaustive
cycle by cycle waveform checking – Practical approach to ensure correctness of design in a test scenario !

6

DUT
(RTL)
HDL

initial
block-1

initial
block-N

Dump Waveform /
timing diagram

Generate stimulus
to drive Input signals

SystemVerilog Top Testbench Module (no primary ports)

resetClock

Visualize & debug
Waveform using
waveform viewer

Clock can be generated
using always block

input
ports

input
ports

output
ports

initial/always
block-M

Monitor input and output signals.
Self-checking with pass/fail criteria

Testbench With Self-Checking Example
❑ Testbench using multiple initial blocks and self-checking

7

`timescale 1ns/10ps // timeunit=1ns, precision=10ps
module testbench_top; // Testbench module without ports
 logic in0, in1, carryin;
 logic[1:0] result;

 fulladder DUT(// instantiate design under test
 .a(in0),
 .b(in1),
 .cin(carryin),
 .cout(result[1]),
 .sum(result[0]));

 initial begin // initial block to drive input values
 repeat(10) begin
 in0 = $random; //apply random stimulus
 in1 = $random;
 carryin = $random;
 #10; // wait for 10 time unit period
 if(in1 + in2 + carryin != result) // self-checking logic.
 $error("ERROR : Incorrect addition value returned\n");
 end
 $finish; // Terminate simulation !
 end

initial begin // initial block to display inputs and outputs
 $monitor("time=%0t in0=%d in1=%d carryin=%d
 result=%d", $time, in0, in1, carryin, result);
 end
endmodule: testbench_top

module fulladder(// Design Module (DUT)

 input logic a, b, cin,
 output logic sum, cout
);
 logic p, q;
 assign p = a ^ b;
 assign q = a & b;
 assign sum = p ^ cin;
 assign cout = q | (p & cin);
endmodule

Test fail reporting !

Testbench With Vectors and Self-Checking Example
❑ Testbench using multiple initial blocks and self-checking

8

`timescale 1ns/10ps // timeunit=1ns, precision=10ps
module testbench_top; // Testbench module without ports
 logic in0, in1, carryin;
 logic[1:0] result;

 fulladder DUT(// instantiate design under test
 .a(in0),
 .b(in1),
 .cin(carryin),
 .cout(result[1]),
 .sum(result[0]));

 initial begin // initial block to drive input values
 repeat(10) begin
 in0 = $random; //apply random stimulus
 in1 = $random;
 carryin = $random;
 #10; // wait for 10 time unit period
 if(in1 + in2 + carryin != result) // self-checking logic.
 $error("ERROR : Incorrect addition value returned\n");
 end
 $finish; // Terminate simulation !
 end

initial begin // initial block to display inputs and outputs
 $monitor("time=%0t in0=%d in1=%d carryin=%d
 result=%d", $time, in0, in1, carryin, result);
 end
endmodule: testbench_top

module fulladder(// Design Module (DUT)

 input logic a, b, cin,
 output logic sum, cout
);
 logic p, q;
 assign p = a ^ b;
 assign q = a & b;
 assign sum = p ^ cin;
 assign cout = q | (p & cin);
endmodule

Test fail reporting !

Testbench With Vectors and Self-Checking
❑ Write testvectors file which includes : inputs and expected output values

▪ Generate clock for assigning inputs, reading outputs

▪ Read testvectors file into array using initial procedural block

▪ Assign inputs, get expected outputs from DUT using always procedural block

▪ Compare outputs to expected outputs and report errors using always procedural block

9

Clock can be generated
using always block

DUT
(RTL)

FullAdder

always
block-1
(Driver)

Dump Waveform /
timing diagram

Extract input bits
Drive to input ports

SystemVerilog Top Testbench Module (no primary ports)

resetClock

Visualize & debug
Waveform using
waveform viewer

a

always block-2
(Monitor &

Comparator)

Monitor inputs, output signals. Self-checking
using expected value from vector file

initial
block

(read file)

testvectors.txt
file

110_01
001_10
101_01
……

1
1
0
0

0
0
1
1

1
0
1
0

b
cin

sum

cout

Store input and
output in a vector
array

Extract output bits and send it to
comparator in testbench

Monitor
input ports

Monitor
output ports

Testbench With Vectors and Self-Checking

Approach A

❑ Testbench clock used to synchronize I/O
▪ Same Clock can be used for DUT clock

❑ Assign inputs on rising edge

❑ Compare outputs with expected outputs

 on falling edge

10

Assign
Inputs

Check and Compare
outputs to expected

before next clock edge

Clock Period

Assign inputs
after some delay

after rising edge clock

Check and Compare
outputs to expected

before next clock edge

Clock Period

SETUP
MARGIN

HOLD
MARGIN

Approach B

❑ Testbench clock used to synchronize I/O
▪ Same Clock can be used for DUT clock

❑ Assign inputs after hold margin (real world
usecase)

❑ Compare outputs with expected outputs

 on falling edge

Approach AApproach A

Testbench With Vectors and Self-Checking
❑ Step 1 : Create test vectors file : test_vectors.txt

▪ Contains input vectors and expected output (<inputs>_<expected outputs>)

• 110_01 → inputs a=1, b=1, cin=0 and expected outputs sum=0, cout=1

• 100_10

• 101_01

• 001_10

• 000_00

• 111_11

11

Testbench With Vectors and Self-Checking
❑ Step 2 : Instantiate DUT and Generate Clock

12

`timescale 1ns/10ps // timeunit=1ns, precision=10ps
module testbench_top; // Testbench module without ports
 logic clk, reset, in0, in1, carryin; // local variables to connect to DUT ports
 logic[1:0] result, expected_val;
 logic[4:0] test_vectors[10000:0]; // array of test vectors
 logic[31:0] test_vector_idx, errors; // index for test vector and error counter

 fulladder DUT(// instantiate design under test
 .a(in0),
 .b(in1),
 .cin(carryin),
 .cout(result[1]),
 .sum(result[0]));

 // generate clock with 10ns period
 always // no sensitivity hence always executes
 begin
 clk = 1;
 #5; // wait for 5ns
 clk = 0;
 #5; // 10ns period end
 end
 …..

Testbench With Vectors and Self-Checking
❑ Step 2 : Read test vectors into array and apply reset sequence

13

// at start of test, load vectors, apply and wait for reset
// Note: $readmemh reads testvector files written in hexadecimal
initial begin
 // read input and expected outputs from testvectors.txt file
 $readmemb(“testvectors.txt", test_vectors);

 // initialize test vector index
 test_vector_idx = 0;

 // initialize error counter
 errors = 0;

 // Apply reset and wait for rest to end
 reset = 1;
 #38;
 reset = 0;
end

Testbench With Vectors and Self-Checking
❑ Step 3 : Assign inputs and expected outputs

14

// Apply test vectors to inputs at rising edge of clock after some delay
always@(posedge clk) begin
 #1; // wait for some delay after rising edge of clk

 // apply test vectors to input and store expected outputs to a local variable
 {a, b, cin, expected_val} = test_vectors[test_vector_idx];
end

▪ Apply inputs with some delay (1ns) after rising edge of clock
▪ This is important Inputs should not change at the same time with clock

▪ Ideal circuits (HDL code) are immune, but real circuits (netlists) may suffer from hold violations.

Testbench With Vectors and Self-Checking
❑ Step 4 : Compare outputs with expected outputs

15

// Compare results on failing edge of the clock
always@(negedge clk) begin
 if (!reset) begin // skip during reset
 if (result !== expected_val) begin
 $display("Error: inputs = %b", {a, b, cin});
 $display(" outputs = %b (%b expected)", result, expected_val);
 errors = errors + 1; // increment error count
 end
 end

 // increment array index and read next test vector
 vectornum = vectornum + 1;
 if(testvectors[vectornum] === 4'bx) begin
 $display("%d tests completed with %d errors", test_vector_idx, errors);
 $finish; // terminate simulation
 end
end
endmodule

Why Verification Signoff is Difficult ?
❑ How long would it take to test a two input 32-bit adder?

▪ In such an adder there are 64 bit inputs = 264 possible inputs

▪ That makes around 1.85 1019 possibilities

▪ If one input tested in 1ns, then 109 inputs per second can be tested

• or 8.64 x 1014 inputs per day

• or 3.15 x 1017 inputs per year

▪ Considering above mentioned it will need 58.5 years to test all possibilities

❑ Directed testing is not feasible for all circuits, we need alternatives
▪ Verify in simulation combination of directed test and corner cases

▪ Complement with Assertion Based Formal verification methods

▪ And also use hardware accelerator platforms such as FPGA based, Mentor Veloce, Cadence
Pallidium and to accelerate simulation

16

SystemVerilog System Tasks and Functions

17

SystemVerilog System Tasks and Functions
❑ SystemVerilog includes pre-defined tasks and functions for below mentioned usage:

▪ Simulation time and Simulation control

▪ Standard output display and File I/O

▪ Timescale

▪ Data type conversions

▪ Timingchecks

▪ Waveform dumping

❑ System tasks and function names begin with a dollar sign ($).

❑ System tasks and functions are not synthesizable
▪ Many of the system tasks and functions used in testbench for simulation purpose

▪ Synthesis compiler tools ignores system functions even if included in synthesizable RTL model

❑ System tasks that extract data, like $monitor needs to be in an initial or always block

18

SystemVerilog System Tasks and Functions

19

Type Purpose System Task/Function List

Simulation
Control

simulation control tasks allow user to either stop or
reset or quit simulation

$finish, $stop, $reset,$fatal

Standard I/O
Display

To display signal and variable values as text on the
screen during simulation.

$display, $strobe, $monitor, $write

File I/O To write signal and variable values in a file and read
content from a file

$fopen, $fclose, $fdisplay,
$fstrobe, $fmonitor, $fwrite,
$readmemb, $readmemh

Timescale To print timescale and timeformat for simulation $timeformat, $printtimescale

Simulation Time To return current simulation time either as a 64-bit
integer, a 32-bit integer, and a real number

$time, $stime, $realtime

Timing Checks Tasks for timing checks and to support timing
verification during simulation, i.e. dynamic timing
analysis

$setup, $hold, $period, $skew,
$width, $nochange, $recovery,
$setuphold

Data type
Conversion

To convert from one data type to another $itor, $rtoi, $bitstoreal, $realtobits

System Tasks and Functions

20

Type Purpose System Task/Function List

Waveform
dumping

To dump all variable changes to a simulation viewer $dumpfile, $dumpvar, $dumpon,
$dumpoff, $dumpall

Assertion severity
control

To specify messages with severity $error, $warning, $info, $fatal,
$assertoff, $assertkill

Random number To generate random numbers $random, $urandom,
$urandom_range, $srandom

$finish and $stop
❑ $finish and $stop

▪ $finish when invoked it exits the simulator and gives control back to the operating system

▪ $stop when invoked it suspends simulation, puts execution in interactive mode where user
can enter commands to further advance simulation

❑ Syntax :
▪ $finish[(N)] and $stop[(N)] where N can take value of 0,1,2

▪ argument(N) is optional

▪ if argument (N) is provided then diagnostic message will be printed on screen

▪ default value of N is 1 for $stop and 0 for $finish if not specified

21

N message

0 No Message

1 Print simulation time and location

2 Print simulation time, location, memory consumption and CPU time

$finish and $stop Example

22

module clock_generator;
 logic clock;
 initial begin
 clock = 0;
 $monitor("at time=%g value of clock=%b", $time, clock);
 #41ns;

$finish(1);
 end
 always@(clock)
 #10ns clock <= !clock;
endmodule

module clock_generator;
 logic clock;
 initial begin
 clock = 0;
 $monitor("at time=%g value of clock=%b", $time, clock);
 #41ns;

$stop(1);
 end
 always@(clock)
 #10ns clock <= !clock;
endmodule

Simulation output if using $finish
at time=0 value of clock=0
at time=10 value of clock=1
at time=20 value of clock=0
at time=30 value of clock=1
at time=40 value of clock=0
$finish called from file "testbench.sv", line 11.
$finish at simulation time 41
Time: 41 ns
Done
Note: $finish quits simulation and control goes back to
operating system

Simulation output if using $stop
at time=0 value of clock=0
at time=10 value of clock=1
at time=20 value of clock=0
at time=30 value of clock=1
at time=40 value of clock=0
$stop at time 41 Scope: test1 File: testbench.sv Line: 11
vsim>
Note: $stop suspended simulation and simulator puts in
interactive mode by returning to command line vsim>

$display and $write
❑ $display and $write :

▪ $display and $write are similar to print function in the ANSI C language, when invoked
immediately prints its arguments

▪ Arguments are printed in the same order it is specified.

▪ Both these tasks gets executed in the active region of execution

▪ $write and $display tasks work in the same way and the only difference is that the $display
task adds a new line character at the end of the output, while the $write task does not

▪ Both tasks have a special character (%) to indicate that the information about signal value is
needed. It is known as format specification.

▪ Example Usage :

24

module test_display_task;
 logic a, b;
 initial begin
 a = 1;
 b = 0;

$display(“Value of a is: %b", a) ;
$display(“Value of b is: %b", b) ;

 end
endmodule

module test_write_task;
 logic a, b;
 initial begin
 a = 1;
 b = 0;

$write(“Value of a is: %b", a) ;
$write(“Value of b is: %b", b) ;

 end
endmodule

Simulation output if using $display
Value of a is: 1
Value of b is: 0

Simulation uutput if using $write
Value of a is: 1Value of b is: 0

Note: $write does not add newline
character by default unlike $display

%b is a binary format
specifier hence display
prints binary value of
‘a’ and ‘b’

When does $monitor and $display execute ?

25

$display executes
in ACTIVE region

$monitor executes
in postponed
region

Credit to : Clifford E. Cummings (sunburst design), Arturo Salz (Synopsys)

$monitor and $strobe
❑ $monitor and $strobe :

▪ $monitor statement monitors the values of variables throughout the simulation
o only displays the value of a variable or a signal whenever its value changes

o whereas $display and $write only prints arguments once when invoked

▪ Only one $monitor process can run at a time.
o If multiple $monitor statements specified, then current $monitor process will get canceled and get

replaced by new $monitor process.

▪ $monitor and $strobe gets executed in the postponed region of execution !

▪ $monitor and $strobe tasks works in the same way and the only difference is :
o $strobe displays the value of a variable or a signal at the end of the current time step and

o $strobe only prints value of variables once.

▪ Arguments are printed in the same order it is specified.

▪ Has a special character (%) to indicate that the information about signal value is needed.
o It is known as format specification.

❑ Example Syntax :
▪ $strobe("At time=%g using strobe value of sum = %0h",$time, data);

▪ $monitor("At time=%g using monitor value of p = %0h",$time, data); 26

Example for $display, $write, $strobe, $monitor using non-blocking statement

❑ Note :
▪ @5, $display and $write prints value of variable ‘p’ as 16 since both tasks executes in active region of NBA

▪ $write requires explicit newline character (\n) to be specified to have next print in next line

▪ @5, $monitor and $strobe prints value of variable ‘p’ as 22 since both tasks executes in postponed region of
NBA (non blocking assignment)

▪ @5, $strobe only prints value of ‘p’ once which is 22

▪ $monitor prints value of ‘p’ each time it changed hence it has multiple prints for values 22, 44, 66 at
timeunits @5, @10 and @15 respectively 27

module test1();
 reg [7:0] p;
 initial begin
 p = 8'h16;
 #5 p <= 8’h22; // since non-blocking, LHS is updated in INACTIVE region
 $display("\t At time=%g using display value of p = %0h",$time, p);
 $write("\t At time=%g using write value of p = %0h\n",$time, p);
 $strobe("\t At time=%g using strobe value of p = %0h",$time, p);
 $monitor("\t At time=%g using monitor value of p = %0h",$time, p);
 #5 p <= 8’h44;
 #5 p <= 8’h66;
 end
endmodule

Simulation Output
At time=5 using display value of p = 16
At time=5 using write value of p = 16
At time=5 using monitor value of p = 22
At time=5 using strobe value of p = 22
At time=10 using monitor value of p = 44
At time=15 using monitor value of p = 66

%h is a hexadecimal format
specifier hence $monitor prints
hexadecimal value for ‘p’

Example for $display, $write, $strobe, $monitor using blocking statement

❑ Note :
▪ Changing non-blocking assignment to blocking assignment, $display and $write at timeunit @5 prints value

of variable ‘p’ as 22 instead of 16.

▪ @15, $monitor prints value of ‘p’ as 77 instead of 66, since in same timeunit there is a non-blocking
assignment statement with value 77 assigned to ‘p’ and 77 will be assigned in non-active region of NBA

• This is due $monitor executes in non-active region of NBA

28

module test2();
 reg [7:0] p;
 initial begin
 p = 8'h16;
 #5 p = 8’h22; // since blocking, LHS is updated in ACTIVE region
 $display("\t At time=%g using display value of p = %0h",$time, p);
 $write("\t At time=%g using write value of p = %0h\n",$time, p);
 $strobe("\t At time=%g using strobe value of p = %0h",$time, p);
 $monitor("\t At time=%g using monitor value of p = %0h",$time, p);
 #5 p = 8’h44;
 #5 p = 8’h66;
 p <= 8’h77;
 end
endmodule

Simulation Output
At time=5 using display value of p = 22
At time=5 using write value of p = 22
At time=5 using monitor value of p = 22
At time=5 using strobe value of p = 22
At time=10 using monitor value of p = 44
At time=15 using monitor value of p = 77

At same time unit, variable ‘p’ has two assignment.
One blocking with value 66 and other is non-blocking
with value 77. Since $monitor executes in non-active
region, it will print overridden value of 77 for ‘p’

Format Specifier and Escape Characters
❑ Format Specifiers for $display, $write, $monitor, $strobe

▪ Required to print variables and signals in one of the format as shown in table below

▪ Default format specifier is %d if not specified

❑ $display, $write, $monitor, $strobe can also have escape characters

29

Format Specifier Description

%d or %D Decimal format

%b or %B Binary format

%h or %H Hexadecimal format

%o or %O Octal format

%c or %C ASCII character format

%v or %V Net signal strength

%m or %M Hierarchical name

%s or %S As a string

%t or %T Current time format

%e or %f or %g or %G Real format

Escape
Characters

Description

\n Newline

\t Tab

\” Double quote

\\ Backslash

$time, $stime and $realtime
❑ $time, $stime and $realtime :

▪ When invoked, it returns current simulation time

▪ It returns 64-bit unsigned value, rounded to the nearest unit

▪ $stime returns a 32-bit unsigned value, truncating large time values.

▪ $realtime returns a real number

▪ These functions have no inputs

❑ Example Syntax :
integer current_time1 ;
curr_time1 = $time ;

integer curr_time2 ;
curr_time2 = $stime ;

real curr_time3 ;
curr_time3 = $realtime ;

30

$fatal, $error, $warning, $info
❑ $fatal :

▪ Run-time fatal error, which terminates the simulation with an error code.

▪ First argument passed to $fatal shall be consistent with the corresponding argument to the
Verilog $finish system task, which sets the level of diagnostic information reported by the tool.

▪ Calling $fatal results in an implicit call to $finish.

❑ $error:
▪ When invoked it will generate run-time error message

❑ $warning:
▪ When invoked it will generate run-time warning, which can be suppressed in a tool-specific

manner.

❑ $info:
▪ Similar to $display

31

SystemVerilog Compiler Directives

32

SystemVerilog Compiler Directive
❑ Compiler directive may be used to control the compilation of a SystemVerilog

description.
▪ The grave accent mark, `, denotes a compiler directive.

▪ A directive is effective from the point at which it is declared to the point at which another
directive overrides it, even across file boundaries.

▪ Compiler directives may appear anywhere in the source description, but it is recommended
that they appear outside a module declaration.

❑ Some of the compiler directives supported in SystemVerilog are listed below :
▪ `include

▪ `define

▪ `ifdef, `else, `ifndef, `undef

▪ `timescale

▪ `import

▪ `defaultnetype

▪ `nounconnected_drive and `unconnected_drive

33

`include directive
❑ `include inserts the contents of a specified file into a file in which it was called.

▪ Compilation proceeds as though the contents of the included source file appear in place of the
`include command

▪ File name should be given in quotation marks (") and

▪ File name can be given using full or relative path

34

`include "half_adder.sv"
module full_adder(
 input logic a, b, cin,
 output logic sum, cout);
 logic w1, w2, w3;
 half_adder ha1 (a, b, w1, w2);
 half_adder ha2(w2, cin, w3, sum);
 or #1 (cout, w1, w3);
endmodule: half_adder

module half_adder(
 input logic a, b,
 output logic sum, cout);
 and #1 (cout, a, b);
 xor #2 (sum, a, b);
endmodule: half_adder

Filename :
full_adder.sv

Filename :
half_adder.sv

module half_adder(
 input logic a, b,
 output logic sum, cout);
 and #1 (cout, a, b);
 xor #2 (sum, a, b);
endmodule: half_adder

module full_adder(
 input logic a, b, cin,
 output logic sum, cout);
 logic w1, w2, w3;
 half_adder ha1 (a, b, w1, w2);
 half_adder ha2(w2, cin, w3, sum);
 or #1 (cout, w1, w3);
endmodule: half_adder

Filename :
full_adder.sv

compiler
will treat

LHS code as
RHS

Intent to include half
adder code which is
defined in separate file

`ifdef, `else, `ifndef, `endif directive
❑ `ifdef, `else, `ifndef can be used to decide which lines of Verilog code should be included

for the compilation
▪ If macro name after `ifdef is defined, then all lines between `ifdef and `else will be compiled.

Otherwise, only lines between `else and `endif will be compiled.

▪ `ifndef is same as `ifdef except it evaluates true if macro after it is not defined

35

Filename :
full_adder.sv

`define behavioral
module full_adder(
 input logic a, b, cin,
 output logic sum, cout
);
 `ifdef behavioral
 assign {cout, sum} = a + b + cin;
 `else
 logic w0, w1, w2;
 xor x0(w0, b, a);
 and a0(w1, b, a);
 and a1(w2, w0, cin);
 or r0(cout, w2, w1);
 xor x1(sum, w0, cin);
`endif
endmodule: full_adder

module full_adder(
 input logic a, b, cin,
 output logic sum, cout);
 assign {cout, sum} = a + b + cin;
endmodule: full_adder

module full_adder(
 input logic a, b, cin,
 output logic sum, cout);
 logic w0, w1, w2;
 xor x0(w0, b, a);
 and a0(w1, b, a);
 and a1(w2, w0, cin);
 or r0(cout, w2, w1);
 xor x1(sum, w0, cin);
endmodule: full_adder

Since behavioral
macro is defined,
compiler will
include lines within
`ifdef body

if behavioral
macros was not
defined, compiler
will include lines
within `else body

compiler will
choose behavioral
implementation
if behavioral macro
is defined

compiler will
choose gatelevel
implementation
if behavioral macro
is not defined

`define and `undef directive
❑ `define directive is used to define the text macros and constants

▪ `define <macro func name> (ARGS) is used to define a macro function that can generate RTL
based on ARGS

▪ `define <constant name> <optional value> is used to declare a synthesis-time constant

❑ `undef directive is used to remove the definition of text macros and constants created by
`define directive

36

Filename :
full_adder.sv

filename : memory.sv
`include "constants.vh"
module memory(
 input logic [`ADDR_BITS - 1:0] address,
 …..
 ..…
 output logic [`LOG2(`NUM_WORDS) - 1:0] data
);
 // memory model implementation
 …..
 …..
endmodule: memory

filename : constants.vh
`ifndef CONSTANTS
 `define CONSTANTS
 `define ADDR_BITS 16
 `define NUM_WORDS 32
 `define LOG2(x) \
 (x <= 2) ? 1 : \
 (x <= 4) ? 2 : \
 (x <= 8) ? 3 : \
 (x <= 16) ? 4 : \
 (x <= 32) ? 5 : \
 (x <= 64) ? 6 : \
 -1
`endif

`LOG2
expands
to the macro
defined in
constants.vh

Includes the
content of
constants.vh
in memory.sv
file

`timescale directive
❑ `timescale directive tells simulator what #delay specified within a module should mean

in terms of time. It has two component(s)

▪ Time unit and Time precision

❑ Syntax
`timescale <timeunit>/<timeprecision>

❑ Example :

 `timescale 1ns/1ns

 `timescale 1ns/1ps

 `timescale 10ns/1ns

❑ Note :
▪ The simulation time and delay values are measured using time unit.

▪ The precision is how delay values are rounded before being used in simulation.

▪ Time precision value has to be equal to or smaller than time unit value 37

`timescale directive
❑ Time unit has two parts :

▪ Magnitude and Unit

▪ In `timescale 10ns/1ns specification, 10 is the magnitude and ns is the unit of time

❑ Legal values for magnitude are : 1, 10, 100

❑ Legal Time Unit Values :

38

Legal Time Unit Real World Time Unit

s Seconds

ms milliseconds

us Microseconds

ns Nanoseconds

ps Picoseconds

fs femtoseconds

Syntax Legal or Illegal ?

`timescale 1ns/1ns Legal syntax

`timescale 10ns/1ns Legal syntax

`timescale 100ns/1ns Legal syntax

`timescale 1000ns/1ns illegal syntax since
magnitude value 1000 is
not a legal value

`timescale 1ns/10ns illegal syntax since
timeprecision > timeunit

`timescale 1us/10ns Legal syntax

❑ Example Syntax

`timescale directive

39

`timescale 10ns/10ns
module t_directive();
 reg enable;
 initial begin
 enable = 0;
 #4.55; // will result in 50ns delay
 enable = 1;
 end
endmodule

Example A

`timescale 10ns/1ns
module t_directive();
 reg enable;
 initial begin
 enable = 0;
 #4.55; // will result in 46ns delay
 enable = 1;
 end
endmodule

Example B

`timescale 1ns/1ns
module t_directive();
 reg enable;
 initial begin
 enable = 0;
 #4.55; // will result in 5ns delay
 enable = 1;
 end
endmodule

Example C

❑ Rule : Multiply each #delay value in module by timeunit and then round the result to the nearest
number based of time precision

❑ Example A :

▪ #4.55 x 10ns timeunit = 45.5ns

▪ Simulator will round 45ns to closet integer multiple of 10ns timeprecision resulting in 50ns

❑ Example B :

▪ #4.55 x 10ns timeunit = 45.5ns

▪ Simulator will round 45.5ns to closet integer multiple of 1ns timeprecision resulting in 46ns

❑ Example C :

▪ #4.55 x 10ns timeunit = 4.55ns

▪ Simulator will round 4.55ns to closet integer multiple of 1ns timeprecision resulting in 5ns

`timescale directive
❑ `timescale directive can be defined in multiple SystemVerilog source files

❑ `timescale directive is not bound to specific module. It is effective until next `timescale
directive is encountered
▪ SystemVerilog source file without a `timescale directive is dependent on the order in which the

file is compiled relative to previous files and will inherit timescale from last file which has
timescale declared.

❑ Example : (File_A.sv compiled first, then File_B.sv and then File_C.sv)

40

`timescale 10ns/1ns
module A();
 reg enable;
 initial begin
 enable = 0;
 #4.55;
 enable = 1;
 end
endmodule

File_A.sv

//No timescale directive declared
module B();
 reg reset;
 initial begin
 reset = 0;
 #3;
 reset = 1;
 end
endmodule

File_B.sv

`timescale 1ns/1ns
module C();
 reg select;
 initial begin
 select = 0;
 #4;
 select = 1;
 end
endmodule

File_C.sv
Compilation order Compilation Order1 2 3

`timescale 10ns/1ns from File_A.sv is in effect for module B
since No timescale directive declared locally in File_B.sv

//will result in 46ns delay //will result in 4ns delay //will result in 30ns delay

`timescale directive
❑ Changing SystemVerilog File_B.sv order of compilation below will result in different

simulation behavior for module B when compared to previous compilation order

41

`timescale 10ns/1ns
module A();
 reg enable;
 initial begin
 enable = 0;
 #4.55;
 enable = 1;
 end
endmodule

File_A.sv

//No timescale directive declared
module B();
 reg reset;
 initial begin
 reset = 0;
 #3;
 reset = 1;
 end
endmodule

File_B.sv

`timescale 1ns/1ns
module C();
 reg select;
 initial begin
 select = 0;
 #4;
 select = 1;
 end
endmodule

File_C.sv
Compilation order Compilation Order1 2 3

`timescale 1ns/1ns from File_C.sv is in effect for module B
since No timescale directive declared locally in File_B.sv

//will result in 46ns delay //will result in 3ns delay //will result in 4ns delay

timeprecision and timeunit directive
❑ SystemVerilog provides timeunit and timeprecision to specify time unit and precision

within a module
▪ Binds the time unit and precision information directly to a module, interface or program block

▪ Resolves the ambiguity and file order dependency that exist

▪ The timeunit and timeprecision statements must be specified immediately after the module,
interface, or program declaration, before any other declarations or statements.

❑ Syntax
timeunit <value>;

timeprecision <value>;

❑ Example :

42

module adder (input wire [63:0] a, b,
 output reg [63:0] sum,
 output reg carry);
 timeunit 1ns;
 timeprecision 10ps;
 ...
endmodule

Precedence in case of mixed declaration of time precision and time unit

43

// external time unit and precision
`timeunit 1ns;
`timeprecision 1ns;

module my_chip (...);
 timeprecision 1ps; // local precision (priority over external)

 always @(posedge data_request) begin
 #2.5 send_packet; // uses external units & local precision
 #3.75us check_crc; // specified inline units take precedence

 end

 task send_packet();
 ...
 endtask

 task check_crc();
 ...
 endtask
endmodule

// directive takes precedence over external
`timescale 1ps/1ps

module FSM (...);
 timeunit 1ns; // local units take priority over directive

 always @(state) begin
 #1.2 case (state) // uses local units & external precision
 WAIT: #20ps ...; // specificied units take precedence

 end
endmodule

Credit : Stuart Sutherland

Credit : Stuart Sutherland

Time unit and precision search order
❑ SystemVerilog compiler/simulator will derive time unit and precision in below

mentioned specific search order :

1. if specified time unit specified as part of the time value.

2. else if local time unit and precision specified in the module

3. else if in case of nested module, use the time unit and precision in parent module

4. else if specified, use the `timescale time unit and precision in effect when the module was
compiled.

5. else if specified, use the time unit and precision defined in compilation scope

6. else use the simulator’s default time unit and precision

44

Simulator, Logic Simulation, Waveform, EDA Tools

45

Simulator
❑ Simulator role is approximating reality. Design realized in virtual environment !

▪ Simulator creates an artificial universe that mimics the future real circuit design

▪ It lets the designer interact with the design before it is manufactured, and enables designer to correct
flaws and problem earlier

o Simulator takes RTL code and simulates design using stimulus provided in testbench code

o Generates waveforms to provide approximate behavior of design prior to manufacturing.

▪ Many physical characteristics are simplified or even ignored to ease the simulation task

o Four state digital simulator assumes only possible values of signals as 0,1,X,Z,

o In the physical/analog world, the signal value can have infinite value since it is continuous function
of voltage and current over a copper wire.

▪ Simulator does not correct automatically incorrect description of the design written in HDL

▪ It is the responsibility of verification engineer, not the simulator, to apply legal set of stimulus to design
under test based on real world usecase.

▪ Simulator is not a static tool ! It requires stimulus to mimic design behavior and provide results
46

Logic Simulation

❑ Two types of Logic simulation
▪ Event driven

o RTL simulation, Verilog/VHDL, slower and more accurate

▪ Cycle based simulation
o Faster and lesser accurate then event driven simulation

47

Event Driven Simulation

❑ Main function of an event driven simulator is to detect events, and schedule gate
simulations in response to them.
▪ An event is defined to be a change in the value of a net/signal

▪ If no events occur, implying that there are no net changes, then no gates will be simulated.

▪ Event driven simulation is designed to remove unwanted gate simulations to achieve higher
simulation performance of a circuit described using HDL

48

Event Driven Simulation (Combinational Circuit)
❑ In case of combinational circuit :

▪ Event driven simulator evaluates gates only when there is a change to its input net/signal
value

▪ No evaluation of gates if there are no events

49

Time P Q R S T U K H L M N G1 G2 G3 G4 G5

0 ns 0 0 0 0 0 0 0 0 0 0 0 E E E E E

2 ns 1 0 0 0 1 1 0 0 1 0 1 E N E N E

4 ns 1 0 0 0 1 1 0 0 1 0 1 N N N N N

6 ns 1 1 1 1 1 1 1 1 1 0 1 E E N E E

8 ns 0 0 1 1 1 1 0 1 1 1 1 E N N E N

E = Gate Evaluated N = Gate Not Evaluated

Combinational Circuit

Event Driven Simulation Results Table

Note : Even though output of XOR gate G4 did not change from time 4 ns to 6 ns, gate G4 is still evaluated by
simulator since G4 gate input signal K and H value changed from 0 to 1. This is because all simulator knows
that is a logic gate with 2 input and 1 output, whether it is a 2 input AND gate or XOR gate, it does know.

Event Driven Simulation (Sequential Circuit)
❑ In case of sequential circuit :

▪ Event driven simulation evaluates sequential element (such as flipflop) only when there is
change to its clock signal

50

Time P Q R S T U K H L M N CK W G1 G2 G3 G4 G5 G6

0 ns 0 0 0 0 0 0 0 0 0 0 0 0 0 E E E E E E

2 ns 1 0 0 0 1 1 0 0 1 0 1 0 0 E N E N E N

4 ns 1 0 0 0 1 1 0 0 1 0 1 1 1 N N N N N E

6 ns 1 1 1 1 1 1 1 1 1 0 1 1 1 E E N E E N

E = Gate Evaluated N = Gate Not Evaluated

Sequential Circuit

Event Driven Simulation Results Table

Input signal N propagates to
output W only on clock event

Two Phase Event Driven Simulation Algorithm

❑ Inputs which has change in value, input processor
adds these events to event queue

❑ For each event in event queue, all fan out gates
are placed in gate queue by event processor

❑ Gate processor evaluates each gate in gate queue
and propagates input signal to its output after
unit delay

❑ Figure illustrates several important points about
event driven simulation.
▪ G2 is simulated twice.

▪ There are two events for the net Q, one which changes
the value from zero to one and the second which
changes Q from one to zero. Thus the value of Q changes
briefly from zero to one and back to zero.

51

Two Phase Event Driven Simulation Algorithm

❖ Each execution of the Event Processor

subroutine defines one unit of simulated time.

❖ Intermediate outputs can be stored after each

execution of gate in gate queue

❖ The first execution of the Event Processor is

designated as simulated time zero.

❖ Simulated time increases by one for each

subsequent execution of the Event Processor

Evaluation for change in value for (A,B)
 from (0,0) to (1,1)

Source and Credit : Writing testbenches : Functional Validation of HDL Models book, Janick Bergeron

Cycle-Based Simulation
❑ Cycle based simulator evaluates logic between state elements and/or ports in the single shot.

▪ Cycle-based simulators collapse combinatorial logic into equations

▪ When the clock input rises, the value of all flipflops are updated using the input value returned by the
pre-compiled combinatorial input functions

❑ Cycle-based simulators have no notion of time within a clock cycle.
▪ All timing and delay information is lost.

▪ Cycle based simulators assume that entire design meets the setup and hold requirements of all the flip
flops

❑ Each logic element is evaluated only once per cycle
▪ Significantly increase the speed of execution, but this can lead to simulation errors.

❑ Cycle-based simulators assume that the active clock edge is the only significant event in the
changing the state of the design.
▪ All other inputs are assumed to be perfectly synchronous with the active clock edge

▪ Cycle-based simulators only function on synchronous logic
52

Cycle-Based Simulation Example

53Source and Credit : Writing testbenches : Functional Validation of HDL Models book, Janick Bergeron

What is a Waveform ?
❑Waveform is a plot of signal values over period of time

54

Waveform Viewer
❑ Waveform viewer is a most common verification tool used in conjunction with

simulator
▪ It allows users visualize the transition of multiple signal over time, and their relationship with

other signal transitions.

▪ Each simulator’s graphical interface has native waveform viewer built into it.

▪ Each simulator generates waveform / trace file in its own proprietary format
o There is a common trace format VCD which each simulator can generated however it is a large and

not very optimal compared to the format which each simulator generates.

▪ Synopsys Verdi is most commonly used for waveform debugging and it works with all major
simulators (VCS, VSIM, NSCIM).
o Each simulator can interact with Verdi to eventually generate fsdb waveform file which can be

viewed using Verdi nWave waveform viewer.

55

Waveform Viewer
❑ Waveform viewer is frequently used to debug simulation during RTL design and

verification phase
▪ Waveform viewer can be used to inspect the behavior of the code is as expected

▪ Can be used interactively while simulation is being run or once simulation has completed

▪ Can play back the events that occurred during RTL and gate level simulation that were
recorded in some trace file

▪ Recording signal trace information while simulation is running, significantly reduces the
performance of the simulator

▪ Typically all signals are recording during RTL and testbench development phase.

• Later, limited traces are recorded and waveforms are only generated for a failure test

56

Simulator Event
Database file

RTL Design
Code

Testbench
Code

Waveform
Viewer

Waveform Viewing as Post-processing

EDA Vendors
❑ Three major EDA Vendors in field of ASIC RTL Design and Verification

▪ Cadence Design Systems

▪ Mentor Graphics

▪ Synopsys

57

ASIC EDA Vendors Front-End CAD Tools

Cadence

IUS / NCSIM

Jasper

Palladium

SimVision

Tempus

JasperGold
SuperLint

Mentor
Graphics

ModelSim/
QuestaSim

Oin

Veloce

Waveform
Viewer / wlf

Questa
Autocheck

Synopsys

VCS

VC-Formal

Zebu

DVE & Verdi

PrimeTime

Spyglass

RTL Simulator

Property Checking

Simulation Accelerator

Waveform Debug

RTL Linting / Rule Checks

Static Timing Analysis

ModelSim Compilation and Running Simulation Flow

58

Step 1 : Create Work Library vlib work

Step 2 : Map work to physical directory vmap work $HOME/worklib

Step 3 : Compile design files vlog –sv –work work full_adder.sv half_adder.sv

Step 4 : Compile testbench files vlog –sv –work work full_adder_testbench.sv

Step 5 : Elaborate and Run Simulation vsim work.full_adder_testbench

Note :
▪ vlog is a compiler tool which compiles HDL source files
▪ -sv switch instructs vlog to compile source files as SystemVerilog code and follow SystemVerilog LRM
▪ If -sv switch is not passed to simulator, then vlog will treate source files as Verilog 2001 code format
▪ vsim does elaboration of code first and then runs simulation.
▪ End of vsim command waveform file with extension .wlf is generated
▪ All compile directives such as `define, `ifdef, `timescale, etc are considered during vlog stage
▪ SystemVerilog parameter constants are considered during vsim elaboration stage
▪ Connections between module ports is done during vsim elaboration stage

	Slide 1: Testbench, System Tasks/Functions, Compiler directives, Simulation, EDA Tools
	Slide 2: Testbench
	Slide 3: Why Testbench ?
	Slide 4: What is a Testbench ?
	Slide 5: Basic Testbench Without Self-Checking
	Slide 6: Basic Testbench With Self-Checking
	Slide 7: Testbench With Self-Checking Example
	Slide 8: Testbench With Vectors and Self-Checking Example
	Slide 9: Testbench With Vectors and Self-Checking
	Slide 10: Testbench With Vectors and Self-Checking
	Slide 11: Testbench With Vectors and Self-Checking
	Slide 12: Testbench With Vectors and Self-Checking
	Slide 13: Testbench With Vectors and Self-Checking
	Slide 14: Testbench With Vectors and Self-Checking
	Slide 15: Testbench With Vectors and Self-Checking
	Slide 16: Why Verification Signoff is Difficult ?
	Slide 17: SystemVerilog System Tasks and Functions
	Slide 18: SystemVerilog System Tasks and Functions
	Slide 19: SystemVerilog System Tasks and Functions
	Slide 20: System Tasks and Functions
	Slide 21: $finish and $stop
	Slide 22: $finish and $stop Example
	Slide 24: $display and $write
	Slide 25: When does $monitor and $display execute ?
	Slide 26: $monitor and $strobe
	Slide 27: Example for $display, $write, $strobe, $monitor using non-blocking statement
	Slide 28: Example for $display, $write, $strobe, $monitor using blocking statement
	Slide 29: Format Specifier and Escape Characters
	Slide 30: $time, $stime and $realtime
	Slide 31: $fatal, $error, $warning, $info
	Slide 32: SystemVerilog Compiler Directives
	Slide 33: SystemVerilog Compiler Directive
	Slide 34: `include directive
	Slide 35: `ifdef, `else, `ifndef, `endif directive
	Slide 36: `define and `undef directive
	Slide 37: `timescale directive
	Slide 38: `timescale directive
	Slide 39: `timescale directive
	Slide 40: `timescale directive
	Slide 41: `timescale directive
	Slide 42: timeprecision and timeunit directive
	Slide 43: Precedence in case of mixed declaration of time precision and time unit
	Slide 44: Time unit and precision search order
	Slide 45: Simulator, Logic Simulation, Waveform, EDA Tools
	Slide 46: Simulator
	Slide 47: Logic Simulation
	Slide 48: Event Driven Simulation
	Slide 49: Event Driven Simulation (Combinational Circuit)
	Slide 50: Event Driven Simulation (Sequential Circuit)
	Slide 51: Two Phase Event Driven Simulation Algorithm
	Slide 52: Cycle-Based Simulation
	Slide 53: Cycle-Based Simulation Example
	Slide 54: What is a Waveform ?
	Slide 55: Waveform Viewer
	Slide 56: Waveform Viewer
	Slide 57: EDA Vendors
	Slide 58: ModelSim Compilation and Running Simulation Flow

