
1

Fault-Tolerant Computer Systems
ECE 60872
Replication

Saurabh Bagchi

School of Electrical & Computer Engineering

Purdue University

Purdue University 2 ECE 60872

Basic Idea

� Data is replicated to tolerate failures

� However, it introduces problems of consistency and
replica management

� Goal of replica management:
– Perform operations on the logical data items

– Underlying system maps it to operations on data replicas

– Mapping must ensure concurrent execution of actions on
replicated data is equivalent to a serial execution of actions on
non-replicated data

– Different copies of data must be in mutually consistent state

� We will study in this topic replica control algorithms, also
known as consistency control algorithms

2

Purdue University 3 ECE 60872

Failure Model

� Two types of failures replica control algorithm must
handle
– Node failures

– Communication failures

� Node failures
– Cause some copies of data to become unavailable

– Replica control algorithm must ensure operations on logical data
can be performed, satisfying one copy serializability

� Communication failures
– Leads to network partitions

– Replica control algorithm has to restrict processing in the
different partitions

Purdue University 4 ECE 60872

Types of Replica Control Algorithms

� Two types of algorithms
– Optimistic
– Pessimistic

� Optimistic strategy
– In case of network partition, no restriction placed on processing

in the different partitions
– Global inconsistencies, if any, are resolved after different

partitions merge

� Pessimistic strategy

– Limit access to data in the different partitions
– Processing on merging partitions is trivial
– Three approaches: Primary site, Active replication, and Voting

3

Purdue University 5 ECE 60872

Optimistic Approach: Version Vector

� Question: How to detect inconsistencies in the partitions
when they merge

� Approach: Version vectors [Parker-ToSE83]
� Assumption

– We are dealing with units of a file
– Copies of each file are on all nodes

� Each file has a version vector, of size n where n is the
total number of nodes

� Version vector V of a copy of file f represents the
number of updates that were performed on this copy
– At node i, for file f, version vector is V
– Entry V[j] (represented as vj) is the number of updates to f from

node j

Purdue University 6 ECE 60872

Optimistic Approach: Version Vector

� A vector V of a file f is said to dominate another vector
V of the file (at another node) if the following condition
holds
– vi  vi,  i = 1, …, n

� When two partitions merge, the version vectors are
compared one by one for each file

� For file f, if version vector of partition 1 (say V1)
dominates over that of partition 2 (say V2)

� Then, copy the file with vector V1 onto the file with vector
V2

� If the version vectors are in conflict, then manual
intervention is needed

4

Purdue University 7 ECE 60872

Optimistic Approach: Precedence Graph

� Version vectors cannot detect read-write conflicts
� Precedence graph approach [Davidson-ToDS84]: Both reads and

writes are logged
� Within each partition, some transaction concurrency control is in

place
– Enforces, transactions within a partition are serializable
– Let the serialization order within partition i be Ti1, Ti2, …, Tin

� When partitions merge, a precedence graph is formed
– Within partition i, edge Tij  Tik if
a) Tik reads an item produced by Tij
b) Tij read an item that was later modified by Tik
– Across partitions i and l, edge Tij  Tlk if
a) Tij has read a value written by Tlk

� What is the condition for no conflict between transactions in
different partitions?

Purdue University 8 ECE 60872

Pessimistic Approach: Primary Site

� For every data item, there is a primary site and there are multiple
backup sites

� For k-resilient data, 1 primary site and k backup sites

� Requests for all operations (read or write) are sent to the primary

� If operation is read
– Primary site performs the read and returns result to client

� If operation is update
– Primary site sends request to at least k backups

– When all backups have received request, then primary performs the
update

– All the backups perform the received update operation

– FIFO reliable broadcast used by primary

– Alternately, primary can take checkpoints periodically and send to the
backups

5

Purdue University 9 ECE 60872

Pessimistic Approach: Primary Site – Failure Cases

� If primary fails
– Election happens among the backups

– The new primary processes all update operations forwarded by
the previous primary

– Then it starts accepting new user requests

� If network partitions
– First, a node has to be able to distinguish between node failure

and network partition

– Only the partition which contains the primary can function

Purdue University 10 ECE 60872

Pessimistic Approach: Active Replicas

� In primary site approach, backups are passive
� Here, all replicas are active
� One approach for active replicas is state machine

approach [Schneider-ACMSurveys90]
� Failure model: fail-stop failures of nodes that have the

data copies
� For k-resiliency, data replicated on ______ nodes
� Request sent to all the replicas
� Any replica can service a request
� Two key requirements: agreement and order
� These can be satisfied by the atomic broadcast

algorithm that we have studied

6

Purdue University 11 ECE 60872

Pessimistic Approach: Voting

� Performing an operation on replicated data is
determined collectively by replicas through voting

� Voting methods do not require a node to distinguish
between node failures and network partitions

� Two kinds of voting methods
– Static methods: The vote assignment and quorum requirements

do not change with time

– Dynamic methods: Vote assignment, number of copies, etc. may
change with time

Purdue University 12 ECE 60872

Static Voting Methods: Weighted Voting

� Weighted voting approach from [Gifford-SoSP79]

� Each replica of the data has a version number
– The version number is incremented whenever a write occurs

� To read data: Acquire at least r votes from the nodes
storing copies of the data – Read quorum

� To write data: Acquire at least w votes from the nodes
storing copies of the data – Write quorum

� Let the total number of votes be v

� Then the following two conditions must be satisfied
1. r + w > v

2. __________

7

Purdue University 13 ECE 60872

Weighted Voting: How to Perform Read or Write

� To perform read or write, a node broadcasts a request
for votes to all the nodes

� Each node which receives this request, replies with
– Version number of its replica
– Number of votes the node has

� The requester collects votes until it has enough votes to
meet the quorum corresponding to the operation (read
or write)

� The requester can then perform the operation
– For read, it takes the value with the highest version number
– For write, it reads the value with the highest version number,

performs the update, and then writes the latest value to all the
quorum members

Purdue University 14 ECE 60872

Weighted Voting: Failure Scenarios

� What happens if the network partitions into two?

� If multiple partitions occur, then any of the following
situations may arise
– One group has read and write quorum

– Several groups have read quorum, none has write quorum

– No group has even a read quorum

� Two sample vote assignments:
– r = 1, w = ?

– r = w = v/2

8

Purdue University 15 ECE 60872

Hierarchical Voting: Basics

� With weighted majority voting, the number of votes that
must be collected increases linearly with the number of
nodes

� Hierarchical voting
(+) Number of votes that must be collected grows slowly
() Multiple rounds of voting are required

� Set of nodes is logically organized as a tree
� Physical copies of data placed at the leaves – level m
� Higher level nodes correspond to logical groups within

which quorum will be established
� Number of children of a node at level i is li+1

– The single root node is at level l0

Purdue University 16 ECE 60872

Hierarchical Voting: Forming Quorums

� A quorum is associated with each level
� Read quorum at level i: How many of the li nodes must

be included in the quorum for each level i-1 node that is
included in the level i-1 quorum

� Quorum at level 1 implies quorum collection at all levels
right down to the leaf level m

� A quorum consensus algorithm is shown to be correct if
1. ri + wi > li, for all levels I = 1, 2, …, m
2. wi > li/2, for all levels I = 1, 2, …, m

� For a read operation, ______ physical copies in read
quorum

� For a write operation, ______ physical copies in write
quorum

9

Purdue University 17 ECE 60872

Hierarchical Voting: Improvement over Majority
Voting

� Given n nodes, what is the height of the tree in terms of
li?

� Say li =3. How many copies have to be read to form a
read quorum if wi = 2?

� How does this compare with the majority voting?

Dynamic Voting

� Static voting methods do not adapt to changes in the
system due to failures
– If due to repeated failures, small partitions are formed, no

partition may be able to perform updates

� Dynamic voting solves the problem due to repeated
partitioning

� We will study scheme by Jajodia et al. in SIGMOD 81

� Assumption: Each site has one vote

� Logical data d, with multiple replicas: di for node i

� For data replica di

– Version number VNi

– Update sites cardinality SCi

Purdue University 18 ECE 60872

10

Dynamic Voting: Update

� Current version number of data d (VN):

� Replica di is current if VNi = VN

� Majority partition: If the partition contains the majority of the current
copies of d

� Basic idea: A node can perform update if it belongs to the majority
partition

� Steps in update:
1. A node 1 wants to do an update and sends a request.

2. It hears responses from nodes 2, …, m.

3. Find maximum version number from among these responses, say M.

4. Find set of nodes with maximum version number, say I.

5. Find maximum SC of nodes in I, say N.

Purdue University 19 ECE 60872

()i
i

Max VN

Dynamic Voting: Update

� If node 1 can perform update
1. Updates the data item d1 and asks 2, …, m to update d2, …,

dm.

2. VNj = M+1, j = 1, …, m

3. SCj = m, j = 1, …, m

� Dynamic voting will allow updates in partitions that do
not form the majority of total nodes

� Once it allows operations in such a group, it must
ensure that no other group can perform the operations
without including any node from this group

Purdue University 20 ECE 60872

11

Dynamic Voting: Catching Up

� After some partitions merge, a node i realizes it does not
have the current version of the data

� It has to catch up and update its state

� Node can only update its state if it belongs to the
majority partition

� Steps to update the state:
1. Node 1 wants to catch up and sends a request.

2. It hears responses from nodes 2, …, m.

3. Find maximum version number from among these responses,
say M.

4. Find set of nodes with maximum version number, say I.

5. Find maximum SC of nodes in I, say N.

Purdue University 21 ECE 60872

Dynamic Voting: Catching Up

� If node 1 can update its state
1. It gets state from a node with the current copy, i.e., a node

whose version number = M

2. VN1 = M

3. SC1 = N

� Example with five nodes A, B, C, D, E in the network
– Under what condition can an update happen with majority

voting?

Purdue University 22 ECE 60872

12

Vote Assignment and Reassignment

� Do we believe in the rule of equal votes for each node?

� Consider the case of 4 nodes: a, b, c, d

� We are using majority voting for updates

� Case 1: All nodes have one vote

� The following scenarios will allow updates to continue

{a, b, c, d}; {a, b, c}; {b, c, d}; {c, d, a}; {a, b, d}

� Case 2: Node a has two votes, all other nodes have one
vote

� The following scenarios will allow updates to continue

All the scenarios of case 1 + {a, b}; {a, c}; {a, d}

� What is the lesson about assignment of votes to nodes?

Purdue University 23 ECE 60872

Vote Assignment and Reassignment

� Goal: Allow operations to continue as partitions become
more and more fragmented

� Solution approach: Dynamically reassign votes
� Approach 1: Overthrow technique

– One node in the majority group supplants the loss of each node
x that is partitioned from the majority group

– Example: A single node x has been partitioned from the rest
– In the majority group, node a has been designated to take over

the votes of x
– After overthrow, a has votes v(a) + 2 v(x)

� Approach 2: Alliance technique
– Distribute the increase 2 v(x) equally among the remaining

nodes in the majority partition

Purdue University 24 ECE 60872

13

Degree of Replication

� Degree of replication = Number of replicas

� As degree of replication , data availability  because
more number of replicas are available

� But, also as degree of replication , checkpointing
overhead  and recovery overhead 

� Availability = (1-unavailability due to all replicas failing)
(1-unavailability due to recovery of a replica) *

(1-unavailability due to checkpointing)

Purdue University 25 ECE 60872

Degree of Replication: Primary Site Approach

� Notation: N: # replicas, time between failures of a replica = 1/f, time
for checkpointing = 1/h = bN, service time for operation on data
1/, inter-arrival time for requests 1/, rate of recovery r (r >> f)

� First term: Unavailability due to all replicas failing

� Probability pF =

� Second term: Unavailability due to recovery

� Probability pR =

� Third term: Unavailability due to checkpointing

� Probability pC =

� Availability A = (1-pF)(1-pR)(1-pC)

� Since A is non-monotonic with N, an optimal N can be found

Purdue University 26 ECE 60872

0

1

!

k
N

k f k




 
  
 

, where / 2
2

Nb
f f

   


 
 

 

Nb

14

Purdue University 27 ECE 60872

References

� Pankaj Jalote, “Fault Tolerance in Distributed Systems”
Chapter 7: Data Replication and Resiliency

