
1

ECE 60872 1

Topic: Simulation & Modeling

Saurabh Bagchi
ECE/CS

Purdue University

Fault-Tolerant Computer System Design
ECE 60872

ECE 60872 2

Markov Chains

� Markov process: Probability distribution for future state only
depends on the present state, not on how the process
arrived at the present state

� Markov chain: State space is discrete
� Discrete time Markov chain: Time is discrete
� X0, X1, .., Xn, .. :observed state at discrete times t0, t1,..,tn, ..
� Xn = j  system state at time step n is j.
� P(Xn = in| X0 = i0, X1 = i1, …, Xn-1 = in-1)

= P(Xn = in| Xn-1 = in-1) (Markov Property)
� pjk(m,n)  P(Xn = k | Xm = j), 0  m  n (conditional pmf)
� pj(n)  P(Xn = j) (unconditional pmf)

2

ECE 60872 3

Homogeneous Markov Chain

� Homogeneous Markov chain: pjk(m,n) only depends on n-m

� n-step transition probability: pjk(n) = P(Xm+n = k | Xm = j)
– 1-step transition probability: pjk = pjk(1) = P(Xn = k| Xn-1 = j)

� Initial probability row vector: p(0) = [p0(0),p1(0), …,pk(0), …]

� Transition probability matrix:

ECE 60872 4

Markov Chain Example

1. System is in state 0 if it is operational, state 1 if it is
undergoing repair. Homogeneous DTMC process.

2. A sequence of successive software runs, each run has two
possible outcomes: success or failure. Xn denotes outcome
of nth run (0 for success, 1 for failure). Occurrence of failure
in a run depends on the outcome of previous run.

P(Xn+1=1 | Xn=0) = 1-p
P(Xn+1=1 | Xn=1) = q

1
,0 , 1

1

a a
P a b

b b

 
    

3

ECE 60872 5

Computation of n-step Transition Probabilities

� For a DTMC, find

� Events: State reaches k (from i) & reaches j (from k) are
independent due to the Markov property (i.e. no history)

� Invoking the theorem of total probability:

� Let P(n) : n-step prob. transition matrix (i,j)th entry is pij(n).
Making m=1, n=n-1 in the above equation:

P(n) = P.P(n-1) = Pn

() (|)ij m n mp n P X j X i  

() () ()ij ik kj
k

p m n p m p n 

State i to j in n steps

ECE 60872 6

Computation of n-step Transition Probabilities

� The pmf of the random variable Xn is

� j, in general can assume countable values, 0,1,2, ….
Defining,

� pj(n) for j=0,1,2,..,k,… can be written in the vector form as,
[p0 p1 p2 … pj …](n) =

4

ECE 60872 7

Two state Markov chain example

� For a two state DTMC, say the transition prob. matrix is

� Then, the n-step transition probability matrix P(n) = Pn is

� Example: Consider a communication network consisting of a sequence
of binary communication channels, with a=1/4, b=1/2. Here Xn denotes
the bit leaving the nth stage and Xo represents the bit entering the
system.

1. If a bit enters as 1, what is the probability of being correctly transmitted
over (a) two stages (b) three stages?

2. Assuming initial probabilities P(X0=0) = 1/3 and P(X0=1) = 2/3, what is
p(n)?

a

ECE 60872 8

Modeling

Reliability: 0.9832 at 20 years

5

ECE 60872 9

– The amount of time a program takes to execute can be computed precisely
if all factors are known, but this is nearly impossible and sometimes useless.
At a more abstract level, we can approximate the running time by a random
variable.

– Fault arrivals almost always must be modeled by a random process.

We begin by describing a subset of SANs: stochastic Petri nets.

Stochastic Activity Networks

Stochastic activity networks, or SANs, are a convenient,
graphical, high-level language for describing system
behavior. SANs are useful in capturing the stochastic (or
random) behavior of a system.

Examples:

ECE 60872 10

Stochastic Petri Net Overview

One of the simplest high-level modeling formalisms is called stochastic
Petri nets. A stochastic Petri net is composed of the following components:

• Places:which contain tokens, and are like variables

• tokens: which are the “value” or “state” of a place

• transitions: which change the number of tokens in places

• input arcs: which connect places to transitions

• output arcs: which connect transitions to places

Timed Untimed

NumCPU

NumCPU=3

every 30 seconds

CPU consumed every 30 seconds

CPU is placed in busy place

6

ECE 60872 11

Firing Rules for SPNs

A stochastic Petri net (SPN) executes according to the
following rules:

• A transition is said to be enabled if for each place connected by input arcs,
the number of tokens in the place is  the number of input arcs connecting
the place and the transition.

Example:

Transition t1 is enabled. Transition t2 is not enabled.

P1

P2
t1

P1

P2
t2

ECE 60872 12

Firing Rules, cont.

� A transition may fire if it is enabled. (More about this later.)
� If a transition fires, for each input arc, a token is removed from the

corresponding place, and for each output arc, a token is added to
the corresponding place.

Example:

P1

P2

t1

P3

P4

t1 fires

7

ECE 60872 13

Specification of Stochastic Behavior of an SPN

� A stochastic Petri net is made from a Petri net by
– Assigning an exponentially distributed time to all transitions.
– Time represents the “delay” between enabling and firing of a transition.
– Transitions “execute” in parallel with independent delay distributions.

� Since the minimum of multiple independent exponentials is itself
exponential, time between transition firings is exponential.

� If a transition t becomes enabled, and before t fires, some other
transition fires and changes the state of the SPN such that t is no longer
enabled, then t aborts, that is, t will not fire.

� Since the exponential distribution is memoryless, one can say that
transitions that remain enabled continue or restart, as is convenient,
without changing the behavior of the network.

P1

ECE 60872 14

SPN Example: Readers/Writers Problem

There are at most N requests in the system at a time. Read requests
arrive at rate ra, and write requests at rate wa. Any number of readers
may read from a file at a time, but only one writer may write at a time.
A reader and writer may not access the file at the same time.

Locks are obtained with rate L (for both read and write locks); reads
and writes are performed at rates r and w respectively. Locks are
released at rate rel.

Note:

N
(N arcs) . .

 .

8

ECE 60872 15

NN
NN

wa relw
L

ra
L r rel

SPN Representation of Reader/Writers Problem

ECE 60872 16

SPN Example: Expected Timings

� Since the minimum of multiple independent exponentials is itself
exponential, time between transition firings is exponential.

P1

1

1

1

P1

c 1

9

ECE 60872 17

Stochastic Activity Networks

The need for more expressive modeling languages has led to several
extensions to stochastic Petri nets. One extension that we will examine is
called stochastic activity networks. Because there are a number of subtle
distinctions relative to SPNs, stochastic activity networks use different
words to describe ideas similar to those of SPNs.

Stochastic activity networks have the following properties:

� A general way to specify that an activity (transition) is enabled
� A general way to specify a completion (firing) rule
� A way to represent zero-timed events
� A way to represent probabilistic choices upon activity completion
� State-dependent parameter values
� General delay distributions on activities

ECE 60872 18

SAN Symbols

Stochastic activity networks (hereafter SANs) have four new
symbols in addition to
those of SPNs:

– Input gate: used to define complex enabling predicates and
completion functions

– Output gate: used to define complex completion functions

– Cases: (small circles on activities) used to specify probabilistic
choices

– Instantaneous activities: used to specify zero-timed events

10

ECE 60872 19

SAN Enabling Rules

An input gate has two components:

� enabling_function (state)  boolean; also called the
enabling predicate

� input_function(state)  state; rule for changing the state of
the model

An activity is enabled if for every connected input gate, the
enabling predicate is true, and for each input arc, the number
of tokens in the connected place  number of arcs.

We use the notation MARK(P) to denote the number of tokens
in place P.

ECE 60872 20

Example SAN Enabling Rule

Example:

IG1 Predicate:
if((MARK(P1)>0 && MARK(P2)==0)||

(MARK(P1)==0 && MARK(P2)>0))
return 1;

else return 0;

Activity a1 is enabled if IG1 predicate is true (1) and MARK(P3) > 0.
(Note that “1” is used to denote true.)

P1

P2

P3

IG1

a1

11

ECE 60872 21

Cases

Cases represent a probabilistic choice of an action to take when an
activity completes.

When activity a completes, a token is removed from place P1, and with
probability  a token is put into place P2, and with probability 1 -  a
token is put into place P3.

Note: cases are numbered, starting with 1, from top to bottom.

P1

P2

P3




a

ECE 60872 22

Output Gates

When an activity completes, an output gate allows for a more
general change in the state of the system. This output gate
function is usually expressed using pseudo-C code.

Example OG Function

MARK(P) = 0;

P

OG

c

1 - c

a

12

ECE 60872 23

Instantaneous Activities

Another important feature of SANs is the instantaneous activity. An
instantaneous activity is like a normal activity except that it completes
in zero time after it becomes enabled. Instantaneous activities can be
used with input gates, output gates, and cases.

Instantaneous activities are useful when modeling events that have an
effect on the state of the system, but happen in negligible time, with
respect to other activities in the system, and the
performance/dependability measures of interest.

ECE 60872 24

SAN Terms

1. activation - time at which an activity begins

2. completion - time at which activity completes

3. abort - time, after activation but before completion, when
activity is no longer enabled

4. active - the time after an activity has been activated but
before it completes or aborts.

13

ECE 60872 25

Illustration of SAN Terms

t

activity time

enabled

activation completion

t

activity
time

enabled

activation completion

activity
time

completion
and activation t

enabled

activation aborted

activity time

ECE 60872 26

Completion Rules

When an activity completes, the following events take place (in the order
listed), possibly changing the marking of the network:

1. If the activity has cases, a case is (probabilistically) chosen.

2. The functions of all the connected input gates are executed (in an unspecified order).

3. Tokens are removed from places connected by input arcs.

4. The functions of all the output gates connected to the chosen case are executed (in
an unspecified order).

5. Tokens are added to places connected by output arcs connected to the chosen case.

Ordering is important, since effect of actions can be marking-dependent.

14

ECE 60872 27

Marking Dependent Behavior

Virtually every parameter may be any function of the state of the
model. Examples of these are

• rates of exponential activities

• parameters of other activity distributions

• case probabilities

An example of this usefulness is a model of three redundant computers
where the coverage (probability that a single computer crashing
crashes the whole system) increases after a failure.

P

OG1

c

1 - c

a

a
case 1 0.1 + 0.02 * MARK(P)
case 2 0.9 – 0.02 * MARK(P)

ECE 60872 28

Fault-Tolerant Computer Failure Model Example

A fault-tolerant computer system is made up of two redundant
computers. Each computer is composed of three redundant
CPU boards. A computer is operational if at least 1 CPU
board is operational, and the system is operational if at least 1
computer is operational.

CPU boards fail at a rate of 1/106 hours, and there is a 0.5%
chance that a board failure will cause a computer failure, and a
0.8% chance that a board will fail in a way that causes a
catastrophic system failure.

15

ECE 60872 29

SAN computer for Computer Failure Model

Enabled1

Enabled2

CPUfail1

CPUfail2

Covered1

Uncovered1

Catastrophic1

CPUboards1

NumComp

Covered2

Uncovered2

Catastrophic2 CPUboards2

ECE 60872 30

Activity Case Probabilities and Input Gate
Definition

Activity Case Probability
1 0.987
2 0.005

CPUfail1

3 0.008

Gate Definition
Predicate

MARK(CPUboards1 > 0) && MARK(NumComp) > 0
Enabled1

Function
MARK(CPUboards1);

16

ECE 60872 31

Output Gate Definitions

Gate Definition
Covered1 Function

if (MARK(CPUboards1) == 0)
MARK(NumComp)--;

Uncovered1 Function
MARK(CPUboards1) = 0;
MARK(NumComp)--;

Catastrophic1 Function
MARK(CPUboards1) = 0;
MARK(NumComp) = 0;

ECE 60872 32

Reward Variables
� Reward variables are a way of measuring performance- or

dependability-related characteristics about a model.

� Examples:
– Expected time until service

– System availability

– Number of misrouted packets in an interval of time

– Processor utilization

– Length of downtime

– Operational cost

– Module or system reliability

� Types:
– A model may be in a certain state or states for some period of time,

for example, “CPU idle” states. This is called a rate reward.

– An activity may complete. This is called an impulse reward.

17

ECE 60872 33

Reward Variables for Example

Reliability

Rate rewards
 Subnet = computer
 Predicate:
 MARK(NumComp) > 0
 Function:
 1
Impulse reward
 none

NumBoardFailures

Rate reward
 none

Impulse reward
 Subnet = computer
 activity = CPUfail1, value = 1
 activity = CPUfail2, value = 1

ECE 60872 34

Reward Variables for Example
Performability

Rate rewards
 Subnet = computer
 Predicate:
 1
 Function:
 MARK(NumComp)
Impulse reward
 none

NumBoards

Rate reward
 Subnet = computer
 Predicate:
 1
 Function:
 MARK(CPUBboards1) + MARK(CPUboards2)
Impulse reward
 none

18

ECE 60872 35

Mobius Software

� Graphically builds and simulates SAN’s

� Includes abstraction:
– Models

• These can be either atomic models or other composed models

• Cycles are not allowed

– Join nodes
• Join nodes define a set of shared variables that are joined across the

child models and nodes

• Shared variables must all have the same type and initial value

– Rep nodes
• Rep nodes define a set of identical replicas and a set of shared

variables across those replicas

ECE 60872 36

Mobius Examples (v 2.5)

� Running an Existing Example:
– Projects -> Unarchive (Multi-Proc)

– Projects -> Open (Multi-Proc) , re-save if necessary

– Documentation:
https://www.mobius.illinois.edu/wiki/index.php/Fault-
Tolerant_Multiprocessor_Model

� Note the rewards for tracking performance

� Note the study variable sweeps for the experiments

� Open either the simulation or transformer

� Collect the output (ASCII) and map it to a plot (Excel)

19

ECE 60872 37

Duplicating Example in Presentation

� Projects -> New

� Double click Atomic
– SAN Model, give it a name “combined_pc_model”

– Replicate the system diagram
• (Use Variable->Mark() instead of MARK(Variable))

– Setup the reward

– Create an experiment/study

– Use a simulated solver

ECE 60872 38

Markov Chains

� Markov process: Probability distribution for future state only
depends on the present state, not on how the process
arrived at the present state

� Markov chain: State space is discrete
� Discrete time Markov chain: Time is discrete
� X0, X1, .., Xn, .. :observed state at discrete times t0, t1,..,tn, ..
� Xn = j  system state at time step n is j.
� P(Xn = in| X0 = i0, X1 = i1, …, Xn-1 = in-1)

= P(Xn = in| Xn-1 = in-1) (Markov Property)
� pjk(m,n)  P(Xn = k | Xm = j), 0  m  n (conditional pmf)
� pj(n)  P(Xn = j) (unconditional pmf)

20

ECE 60872 39

Homogeneous Markov Chain

� Homogeneous Markov chain: pjk(m,n) only depends on n-m

� n-step transition probability: pjk(n) = P(Xm+n = k | Xm = j)
– 1-step transition probability: pjk = pjk(1) = P(Xn = k| Xn-1 = j)

� Initial probability row vector: p(0) = [p0(0),p1(0), …,pk(0), …]

� Transition probability matrix:

ECE 60872 40

Markov Chain Example

1. System is in state 0 if it is operational, state 1 if it is
undergoing repair. Homogeneous DTMC process.

2. A sequence of successive software runs, each run has two
possible outcomes: success or failure. Xn denotes outcome
of nth run (0 for success, 1 for failure). Occurrence of failure
in a run depends on the outcome of previous run.

P(Xn+1=1 | Xn=0) = 1-p
P(Xn+1=1 | Xn=1) = q

1
,0 , 1

1

a a
P a b

b b

 
    

21

ECE 60872 41

Computation of n-step Transition Probabilities

� For a DTMC, find

� Events: State reaches k (from i) & reaches j (from k) are
independent due to the Markov property (i.e. no history)

� Invoking the theorem of total probability:

� Let P(n) : n-step prob. transition matrix (i,j)th entry is pij(n).
Making m=1, n=n-1 in the above equation:

P(n) = P.P(n-1) = Pn

() (|)ij m n mp n P X j X i  

() () ()ij ik kj
k

p m n p m p n 

ECE 60872 42

Computation of n-step Transition Probabilities

� The pmf of the random variable Xn is

� j, in general can assume countable values, 0,1,2, ….
Defining,

� pj(n) for j=0,1,2,..,k,… can be written in the vector form as,
[p0 p1 p2 … pj …](n) =

22

ECE 60872 43

� For a two state DTMC, say the transition prob. matrix is

Two state Markov chain example

Source: http://www.statslab.cam.ac.uk/~rrw1/markov/M.pdf

ECE 60872 44

Two state Markov chain example

� Then, the n-step transition probability matrix P(n) = Pn is

� Example: Consider a communication network consisting of
a sequence of binary communication channels, with a=1/4,
b=1/2. Here Xn denotes the bit leaving the nth stage and Xo
represents the bit entering the system.

1. If a bit enters as 1, what is the probability of being correctly
transmitted over (a) two stages (b) three stages?

2. Assuming initial probabilities P(X0=0) = 1/3 and P(X0=1) =
2/3, what is p(n)?

