
Slide 118ECE 60872

Secure Coding Practices

Saurabh Bagchi
ECECS

Purdue University

Fault-Tolerant Computer System
Design

ECE 60872

Slide 218ECE 60872

Goals
• The goal of software security is to maintain the

confidentiality, integrity, and availability of information

• The goal is accomplished through the implementation of
security controls

• Here we discuss technical controls specific to mitigating
the occurrence of common software vulnerabilities.

Slide 318ECE 60872

Input Validation and Data Sanitization
• Software programs often contain multiple components wherein

each component operates in one or more trusted domains.
– Example: Component 1 has access to the file system but no access to the

network, while component 2 has access to the network but not to file system.

• Distrustful decomposition and privilege separation are examples of
secure design patterns that reduce the amount of code that runs
with special privileges

• Data that crosses a trust boundary should be validated unless the
code that produces this data provides guarantees of validity.

Slide 418ECE 60872

How to Validate Data that Crosses Trust Boundary
• Validation: Process of ensuring that input data falls within the expected domain

of valid program input.
– Requires that inputs conform to type and numeric range requirements plus to input invariants

• Sanitization: In many cases, the data is passed directly to a component in a
different trusted domain. Data sanitization is the process of ensuring that data
conforms to the requirements of the subsystem to which it is passed.

– Sanitization also involves ensuring that data conforms to security-related requirements
regarding leaking or exposure of sensitive data when output across a trust boundary.

– Sanitization may include the elimination of unwanted characters from the input by means of
removing, replacing, encoding, or escaping the characters.

– Sanitization may occur following input (input sanitization) or before the data is passed across a
trust boundary (output sanitization).

• Data sanitization and input validation may coexist and complement each other.

• String data that specify commands or instructions are a special concern because
they may contain special characters that can trigger commands or actions,
resulting in a software vulnerability

Slide 518ECE 60872

Example: Need for Input Validation
• A user who has the ability to provide input string data that is

incorporated into an XML document can inject XML tags.

• These tags are interpreted by the XML parser and may cause data
to be overridden.

• An online store application that allows the user to specify the
quantity of an item has the following XML document:

• An attacker might input the following string instead of a count for
the quantity:

Slide 618ECE 60872

Example: Need for Input Validation

• In this case, the XML resolves to the following:

• An XML parser may interpret the XML in this example such that
the second price field overrides the first, changing the price of the
item to $1.

Slide 718ECE 60872

Leaking Capabilities
• A capability is a communicable, unforgeable token of authority. It

refers to a value that references an object along with an associated
set of access rights.

• A user program on a capability-based operating system must use a
capability to access an object.

• Every Java object has an unforgeable identity in addition to its
contents, because the == operator tests reference equality.
– This unforgeable identity allows use of a reference to an object as a token,

serving as an unforgeable proof of authorization to perform some action

• One surprising source of leaked capabilities and leaked data is
inner classes, which have access to all the fields of their enclosing
class.

Slide 818ECE 60872

Example: Leaked Capabilities
• Root cause: Nested class has access to the private fields of the

outer class. Also, the same fields can be accessed by any other
class within the package when the nested class is declared public
or if it contains public methods or constructors.

• Principle: The nested class must not expose the private members of
the outer class to external classes or packages.

Slide 918ECE 60872

Example: Leaked Capabilities
• Compliant Solution: Uses the private access specifier to hide the

inner class and all contained methods and constructors.

• Compilation of AnotherClass now results in a compilation error
because the class attempts to access a private nested class.

Slide 1018ECE 60872

Leaking Sensitive Data
• A system’s security policy determines which information is

sensitive.
– Sensitive data may include user information such as social security or credit

card numbers, passwords, or private keys.

• When components with differing degrees of trust share data, the
data are said to flow across a trust boundary.

• Preventing unauthorized access may be as simple as not
transmitting the data, or it may involve filtering sensitive data from
data that can flow across a trust boundary.

Slide 1118ECE 60872

Example: Leaking Information through Exception Messages

• Failure to filter sensitive information when propagating exceptions
can result in leaks that help an attacker develop further exploits.

• An attacker may craft input arguments to expose internal structures
and mechanisms of the application.

• Both the exception message text and the type of an exception can
leak information.
– For example, the FileNotFoundException message reveals information

about the file system layout, and the exception type reveals the absence of
the requested file.

Slide 1218ECE 60872

• The program must read a file supplied by the user, but the contents
and layout of the file system are sensitive.

• The program accepts a file name as an input argument.

• When a requested file is absent, the FileInputStream constructor
throws a FileNotFoundException, allowing an attacker to
reconstruct the underlying file system by repeatedly passing
fictitious path names to the program.

Example: Leaking Information through Exception Messages

Slide 1318ECE 60872

• The code example logs the exception and then wraps it in a more
general exception before rethrowing it

• Even when the logged exception is not accessible to the user, the
original exception is still informative and can be used by an
attacker to discover sensitive information about the file system.

• This example also violates principle of release resources when they
are no longer needed, as it fails to close the input stream in a
finally block.

Example: Leaking Information through Exception Messages

Slide 1418ECE 60872

Race Conditions
• A race condition occurs when multiple threads of control try to

perform a non-atomic operation on a shared object
– Multithreaded applications accessing shared data

– Accessing external shared resources such as the file system

• General causes
– Threads or signal handlers without proper synchronization

– Non-reentrant functions (may have shared variables)

– Performing non-atomic sequences of operations on shared resources (file
system, shared memory) and assuming they are atomic

• A program contains a data race if two threads simultaneously
access the same variable, where at least one of these accesses is a
write

Slides courtesy of Barton P. Miller (U of Wisconsin)

Slide 1518ECE 60872

Example: Race Condition

Slides courtesy of Barton P. Miller (U of Wisconsin)

Slide 1618ECE 60872

Example: Mitigation of Race Condition

Slides courtesy of Barton P. Miller (U of Wisconsin)

Slide 1718ECE 60872

Summing it up: The Top 10
1. Validate input.

2. Heed compiler warnings.

3. Architect and design for security policies.

4. Keep it simple.

5. Default deny.

6. Adhere to the principle of least privilege.

7. Sanitize data sent to other systems.

8. Practice defense in depth.

9. Use effective quality assurance techniques.

10. Adopt a secure coding standard.

Slide 1818ECE 60872

References
• OWASP “Secure Coding Practices - Quick Reference

Guide,” November 2010.

• SEI “CERT Top 10 Secure Coding Practices,” last
modified May 2011.

• SEI “CERT Oracle Coding Standard for Java,” last
modified: May 2015.

