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1 Continuous Probability

You’re probably (pun intended) familiar with the concept of discrete probability—each possible
outcome has some non-zero chance of happening, the chance of multiple disjoint events occurring
is the sum of their probabilities, etc. However, unless you’ve taken a probability/stats class, you
might not be familiar with continuous probability.
A continuous random variable X represents the result of some random process that can produce one
of an uncountably infinite number of possible outcomes. For example, we write X ∼ Uniform (0, 1)
to denote that X has equal chance of being drawn from anywhere in the real interval [0, 1].
We can represent the distribution of possible outcomes for a continuous random variable using a
probability density function (PDF) f : Ω 7→ R, where Ω is the set of outcomes. For example,
fX(x) = 1 is the probability density function for X ∼ Uniform (0, 1).
A probability density function is similar to the discrete probability mass function (PMF), which
assigns a non-negative probability to each possible outcome. However, there is one key difference:
when the outcomes are drawn from a continuous space, it no longer makes sense for fX(x) to be
the probability of drawing x. Since there are uncountably infinite possible values of x, if we try to
add up all their probabilities, we’ll get infinity. Instead, fX(x) represents the probability density
at x, and the corresponding continuous operation is to integrate.
To compute the probability that X falls within some interval [a, b]:

P {X ∈ [a, b]} =
∫ b

a
fX(x)dx

As a distribution, fX(x) should integrate to exactly 1 over its domain.

1.1 Questions

Consider the random variable X ∈ [0, 1] with distribution fX(x) = 2− 2x.

1. What is P {X = 0.5}?

2. What is P {0.49 ≤ X ≤ 0.51}?

3. A discrete probability distribution is described by a probability mass function rather than
probability density function. Why do these terms differ?
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2 Sampling

In many applications, we may want to draw samples from a continuous distribution according to
some PDF. However, it’s not immediately clear how to do so—computers, if they can generate truly
random samples at all, can only really sample uniformly. Thankfully, there are two particularly
useful methods for generating any distribution given only a uniform sample generator.

2.1 Inversion Sampling

If you have an analytical description of the PDF (or PMF) you wish to sample from, you can use
the method of inversion sampling. This method relies on the concept of the cumulative distribution
function (CDF), defined as:

FX(x) = P {X ≤ x} =
∫ x

−∞
fX(z)dz

That is, FX(x) represents the probability that the outcome is at most x. If X is defined over the
interval [0, 1], then clearly we would have that FX(0) = 0 and FX(1) = 1, as there is no chance that
X = 0 and 100% chance that X ≤ 1. Further, since fX(x) ≥ 0, we know FX(x) is non-decreasing.
Given these properties, we may consider the inverse CDF, F−1

X (x). If we plug in a uniformly
distributed 0− 1 variable to the inverse, we will be uniformly sampling the range of the CDF and
getting back the corresponding point in the CDF domain. This is, in fact, sampling the domain
with a distribution proportional to the derivative of FX(x), which we can see pictorially:

...as the amount of the range taken up by a small neighborhood around x is proportional to the
slope of the CDF at x. Conveniently, it turns out d

dxFX(x) = fX(x), so this is sampling exactly
the distribution we wanted.
Note that while here we assumed FX(x) has a unique inverse, this assumption is not actually
required. It may be illustrative to think about why.
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2.2 Rejection Sampling

On the other hand, it might be the case that it’s difficult or impossible to analytically find, invert,
and evaluate the CDF of your distribution. In this case, you might want to use rejection sampling,
as long as your desired distribution is bounded.
Implementing rejection sampling is usually quite simple. First, we need to know the maximum
value attained by fX(x) (precisely sup{fX(x) | x ∈ X}) so that we can later normalize the PDF.
Denote the maximum as fmax. Second, we can uniformly sample x from the domain and accept it
with probability fX(x)

fmax
. If we instead reject the sample, we start over with a new uniform sample

of the domain.
In the 1D case, we can also think of this geometrically:

...where we sample some point (x, y) ∈ [a, b]× [0, 1], and reject it if fX(x)
fmax

< y.
To see that this works, consider the probability of ending up with any outcome x (or in the
continuous case, a small neighborhood around x). If we choose some x in step 1, we will then
accept it with probability proportional to fX(x). If we reject the sample, we have an equal chance
of choosing each x for the next attempt, so rejections do not effect the distribution. You can also
convince yourself that dividing by fmax will properly normalize the resulting PDF. (For proof, refer
to this link.)

2.3 Questions

For the following procedures, assume you have access to RNG::Unit(), a function which returns a
float uniformly distributed in [0, 1].
Consider the random variable X ∈ [0, 1] with distribution fX(x) = 2− 2x.

1. Write a procedure that inversion samples X.

2. Write a procedure that rejection samples X.

3. Which of these methods might require more computation, and which might require more
random numbers?

4. (Extra Credit) Prove that FX(X) ∼ Uniform (0, 1) for any X by showing they have the same
CDF. Argue that you can choose some F̃X

−1(X) if a unique inverse does not exist.
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3 Extra Note: Delta Distributions

A special distribution that comes up when discussing BSDFs is the Dirac delta distribution. This
distribution δc(x) is non-zero at exactly one point in the domain, but still integrates to 1. Techni-
cally, this means:

δc(x) =
{
∞ x = c

0 otherwise

such that
∫

Ω δc(x)dx = 1. Here’s a graph of δ0(x):

However, this description is not very illustrative. We can instead think of δ as an ‘if’ statement: if
x = c, then accept, otherwise reject. If we consider a δc as a probability distribution, this implies
P {X = c} = 1, as the only accepted outcome is c. So then, how do we sample δc? Simply return
c every time.
Hence, we can use the δ distribution to emulate a discrete PMF using a continuous PDF. For
example, consider fX(x) = 1

2δa(x)+ 1
2δb(x). This continuous PDF emulates the discrete distribution

P {X = a} = P {X = b} = 1
2 . If we wanted to sample this, we would simply return a or b with

equal probability.
Unfortunately, in this case we still have that fX(x) is still either 0 or ∞, so it is rather hard to
compute with. However, if we pretend that our PDF is actually a PMF, it may make sense to
return the straight-up probability, which is how Scotty3D implements delta-based BSDFs. The
idea of emulating a PMF using deltas will be particularly useful for the glass BSDF.
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