void foo (char* x, int n) {
char* y = copy (x, n);
printf ("%s", vy);

}

Exercise 6

Write the interrupt driven version of the following code that prints the sum of the first 256 bytes
of disk block 1234. Assume that async_read correctly performs the PIOs to request the block
data be transferred into buf and that it enques sufficient information so that the interrupt service
routine can call the specified event handler.

char buf[256];
void ps() {
async_read (1234, buf, 256);
int s=0;
for (int i=0; 1<256; i++)
s += bufl[i];
printf ("%d\n", s);
}

10 (6 marks) Using Function Pointers. Write a C procedure named apply that returns either the minimum or
maximum value of a list of non-negative integers, as determined by one of its parameters, a function pointer. If the list
is empty it should return -1. Assume the existence of procedures named min (a,b) and max (a,b) that compare
two integers and returns the min or max integer. No other procedures are allowed and apply is not permitted to use
an 1if statement. For example, the following statement should compute the maximum value in list a of length n.

int m = apply (max, a, n);

Write the procedure apply () :

11 (6 marks) IO Devices. For each of the following, (a) explain what it is and (b) state whether the CPU or IO
controller determines when it occurs (i.e., initiates it).

11a Programmed IO (PIO):

11b DMA:

11c¢ Interrupts:

10

9 (6 marks) Switch Statements. There are two ways to implement switch statements in machine code. For
purposes of this question, lets call them A and B.

9a Describe A, very briefly.
9b Describe B, very briefly.

9c State precisely one situation where A would be preferred over B and why.

9d State precisely one situation where B would be preferred over A and why.

10 @ marksy IO Devices. Three key hardware features used to incorporate IO Devices with the CPU and memory
are Programmed 10O (P10O), Direct Memory Access (DMA) and interrupts.

10a Carefully explain the difference between PIO and DMA; give one advantage of DMA.

10b Demonstrate why interrupts are needed by carefully explaining what programs would have to do differently
to perform IO if interrupts didn’t exist and what disadvantages this approach would have.

10c Explain how interrupts would be added to the Simple Machine simulator by indicating where the interrupt-
handling logic would be added and saying roughly what it would do.

Exercise 4
It prints 120.

Exercise 5
Yes, a memory leak is possible. It can be fixed as follows:

char* copy (char* from, int n) {
char* to = malloc (n);
for (int 1=0; i<n; 1++)
to[i] = from[i];
return to;

}

void foo (char* x, int n) {
char* y = copy (x, n);
printf ("%s", v);
free (y);

}

Exercise 6

void getsum (char* buf, int n) {
int s=0;
for (int 1=0; i<256; 1i++)
s += buf[il]:;
printf ("%d\n", s);
}

char buf[256];

void ps() {
int s = async read (1234, buf, 256,

}

getsum) ;

int ¢ = 0;
int*x v[2];

void bar
if (v

int* ap) {
== NULL || *ap < xv[c]) {
] != NULL)

void zot (int a) {

if (v[c] != NULL && a < *v[c])
xv[c] = a;
c = (c+ 1) % 2;

10 (6 marks) Using Function Pointers. Write a C procedure named apply that returns either the minimum or
maximum value of a list of non-negative integers, as determined by one of its parameters, a function pointer. If the list
is empty it should return -1. Assume the existence of procedures named min (a,b) and max (a,b) that compare
two integers and returns the min or max integer. No other procedures are allowed and apply is not permitted to use
an 1if statement. For example, the following statement should compute the maximum value in list a of length n.

int m = apply (max, a, n);

Write the procedure apply () :

int apply (int (*f) (int, int), int* a, int n) {

if (n<=0)

return -1; // for 2016W2 this isn’t necessary.
else {

int v =

01;
=1; i<n; 1i++)

v, alil);

al
for (int 1
v = f(

return v;

11 (6 marks) IO Devices. For each of the following, (a) explain what it is and (b) state whether the CPU or 10
controller determines when it occurs (i.e., initiates it).

11a Programmed IO (PIO):
11b DMA:

11c Interrupts:

12 8 marksy Threads and Scheduling. Answer the following questions about threads.

12a Explain briefly (without giving any code) how threads can be used to simplify code that performs asyn-
chronous operations such as communicating with an IO controller.

12b Explain briefly the difference between uthread_yield and uthread_block.
12¢ Is it possible for a thread to unblock itself? Explain your answer.

12d Consider a system in which there is at least one thread on the ready queue when a thread unblocks. What
happens to the unblocked thread? Explain.

13 (9marks) Synchronization Consider the following C code that uses mutexes and condition variables. The code
is considered to be is correct if both procedures complete successfully when they are called from concurrent threads

9 (6 marks) Switch Statements. There are two ways to implement switch statements in machine code. For
purposes of this question, lets call them A and B.

9a

9b

9¢

9d

Describe A, very briefly.

‘ A sequence of i f statements.

Describe B, very briefly.

‘ A jump table of labels corresponding to switch-cases.

State precisely one situation where A would be preferred over B and why.

If there are very few cases to consider, then the overhead of using a jumptable is higher than a few statements.
Reading memory is much slower than executing a conditional branch.

OR: If the case values are spread apart (sparsely populated), there will be a lot of wasted memory in the
jumptable because we have to represent a contiguous range of values in a jump table. e.g.

switch (1) {
case 1:
J = 3¢
break;
case 1000000:
j = 10;
break;

}

would require a jump table with one million elements!

State precisely one situation where B would be preferred over A and why.

When you have lots of cases to check and their values are close together (densely populated), the jump table
is the best choice. When there are N cases, it takes O (N) to test all cases, whereas it will always take O (1)

with a jump table. If the values are closer together, then we waste less memory creating the jump table.

10 marks) IO Devices. Three key hardware features used to incorporate IO Devices with the CPU and memory
are Programmed IO (PIO), Direct Memory Access (DMA) and interrupts.

10a

10b

10c

Carefully explain the difference between PIO and DMA; give one advantage of DMA.

The CPU uses PIO to read or write to an IO device one word at a time. IO Devices use DMA to read or write
memory directly, without involving the CPU. An advantage of PIO is that the CPU can use it to transfer data
to an IO device, or control it; e.g., to signal the IO device that the CPU wants something, Another advantage
is that PIO has lower overhead and lower latency for very small transfers because it avoids the overhead of
setting up a DMA. The advantage of DMA is that the transfer occurs asynchronously to the CPU and so the
CPU is free to do other things during the transfer. For any transfer larger than 64-128 bytes, DMA typically

transfers with lower overhead and latency than PIO.

Demonstrate why interrupts are needed by carefully explaining what programs would have to do differently
to perform IO if interrupts didn’t exist and what disadvantages this approach would have.

If interrupts didn’t exist, a program would have to repeatedly poll the IO device to determine whether the
device had information (e.g., keyboard presses) for it. The disadvantages of polling are that it wastes CPU
cycles unnecessarily when the IO device doesn’t have information for the CPU. If polling is very frequent,
then this overhead is very high.

Infrequent polling may not be a suitable solution either because it increases the latency (i.e., delay) between
when an IO device notifies the CPU that it wants its attention, and when the CPU actually notices it. This
would increase, for example, the latency of disk and network reads. There is an undesirable tradeoff between
latency and CPU ‘wastage’.

Explain how interrupts would be added to the Simple Machine simulator by indicating where the interrupt-
handling logic would be added and saying roughly what it would do.

Insert a new stage just before the fetch stage (or after the execute stage). Check there to see if there is an
interrupt pending and if so, jump to the address specified in the interrupt vector table. This will invoke the
specific interrupt service routine for the given type of interrupt.

11 (10 marks) Threads.

11a

11b

11c

11d

11e

Threads can be used to manage the asynchrony inherent in I/O-device access (e.g., reading from disk). Care-
fully explain how threads help.

Because threads execute asynchronously themselves, you can write code that looks synchronous but executes
asynchronously. This is easier to read, write, and think about for programmers.

IO can take quite long (eg millions of CPU cycles), and in this time the CPU can be doing other things.
Threads provide this flexibility because they can easily be blocked when they are waiting for something, and
the CPU can go ahead and execute other threads.

Carefully describe in plain English the sequence of steps a user-level thread system such as uthreads follows to
switch from one thread to another. Ensure that your answer explains the role of the ready queue and explains
how the hardware switches from running one thread to the other.

A thread switch occurs in uthreads when a thread calls uthread_block () oruthread_yield (). This
places the current thread on the ready queue and dequeues something else off the ready queue to begin execu-
tion.

The actual transfer of execution is achieved by pushing the register of the first thread onto its stack, saving its
current stack pointer in its TCB and then switching the value of the stack pointer register to point to the target
thread’s stack. Then the CPU pops the registers of this new thread from its stack, and resumes execution.

What is the role of the thread scheduler?

‘ The thread scheduler decides which thread should execute next.

Explain priority-based, round-robin scheduling.

Each thread has an assigned priority. When a thread finishes execution (or blocks/yields), the next thread
chosen to execute is the thread with the highest priority.

Explain what else is needed to ensure that threads of equal priority get an equal share of the CPU?

In the above explanation of priority-based, round-robin scheduling starvation is possible because a single
high priority thread could dominate all the CPU time if it never finishes execution. Quantum preemption
would allow for all threads of equal priority to get an equal share of the CPU by periodically interrupting and
switching threads.

12 (16 marks) Synchronization

12a

Explain the difference between busy-waiting and blocking. Give one advantage of blocking.

Busy waiting occurs when the a thread waits for a lock to be free by actively polling the lock’s value, spinning
in a loop repeatedly reading it until it sees that it is available.

Blocking waiting occurs when a thread waits for a lock by sleeping so that other threads can use the CPU. It
is then the responsibility of the thread that releases the lock to wakeup the waiting thread.

10

