7. Reference Counting s marks|

Modify the following three independent modules to eliminate memory leaks and avoid dangling pointers by
inserting free statements where appropriate and/or changing malloc’s to rc_malloc's and inserting
rc_keep ref and rc_free ref calls where appropriate, following the best practice for using reference
counting. All calls must include correct parameters. The code spans two pages.

/171117111717
// Module A

// private to A and not accessible in any other module
struct A {
struct S* s;
}i
int ¢ = 0;
struct A* a = NULL;

// other modules can call foo
void foo(struct S* s) {

a = malloc(sizeof (struct A));

*g=>1 = c;

8 ofl1

171117111717
// Module B

int bar() {

struct S* s = malloc(sizeof(struct S));

s->1 = malloc(sizeof(int));

foo(s);

return *s->i;

/11111171117
// Shared between models A and B

struct S {
int* i;

}i

171111171717
// Module C

int main() {
int s = 0;
for (int i=0; i<100; i++)
s = s + bar();
printf("%d\n", s);
}

9ofll1

7. Reference Counting s marks|

Modify the following three independent modules to eliminate memory leaks and avoid dangling pointers by
inserting free statements where appropriate and/or changing malloc’s to rc_malloc's and inserting
rc_keep ref and rc_free ref calls where appropriate, following the best practice for using reference
counting. All calls must include correct parameters. The code spans two pages.

/171117111717
// Module A

// private to A and not accessible in any other module
struct A {
struct S* s;
}i
int ¢ = 0;
struct A* a = NULL;

// other modules can call foo
void foo(struct S* s) {
if (¢ % 3 == 0) {
if (a) {
rc_free_ref(a->s->i);
rc_free_ref(a->s);
free(a);
}
a = malloc(sizeof (struct A));
a->s = s;
rc_keep_ref(a->s->i);
rc_keep_ref (a->s);
}
c =c + 1;
*g=>1 = c;

8 ofl1

171117111717
// Module B

int bar() {
struct S* s = rc_malloc(sizeof(struct S));
s->i = rc_malloc(sizeof(int));
foo(s);
int t = *s->i;
rc_free ref(s->i);
rc_free_ref(s);
return t;

}

1111117117
// Shared between models A and B

struct S {
int* i;

}i

171117111717
// Module C

int main() {
int s = 0;
for (int i=0; i<100; i++)
s = s + bar();
printf("%d\n", s);
}

9ofll1

7. Reference Counting s marks|

Modify the following three independent modules to eliminate memory leaks and avoid dangling pointers by
inserting free statements where appropriate and/or changing malloc’s to rc_malloc's and inserting
rc_keep ref and rc_free ref calls where appropriate, following the best practice for using reference
counting. All calls must include correct parameters. The code spans two pages.

/171117111717
// Module A

// private to A and not accessible in any other module
struct A {
struct S* s;
}i
int ¢ = 0;
struct A* a = NULL;

// other modules can call foo
void foo(struct S* s) {
if (¢ % 3 == 0) {
if (a) {
rc_free_ref(a->s->i);
rc_free_ref(a->s);
free(a);
}
a = malloc(sizeof (struct A));
a->s = s;
rc_keep_ref(a->s->i);
rc_keep_ref (a->s);
}
c =c + 1;
*g=>1 = c;

8 ofl1

8¢ Error 3:

line:

type:

fix:

8d Error 4:
line:
type:

fix:

9 (6 marks) Reference Counting. The following code has a memory leak bug. Add calls to inc (o) and dec (o)
to increment and decrement the reference count of object o and make any other small changes necessary so that the
program is free of memory leaks and dangling pointers. Assume that rc_malloc calls malloc and initializes the
object’s reference count to zero.

void foo (int i) { int ¢ = 0;
intx ip = rc_malloc (sizeof (int)); int* v[2];
ip = i void bar (int ap) {
bar (ip); if (v[c] == NULL || *ap < xv[c]) {

zot (*1ip);

void zot (int a) {

if (v[c] != NULL && a < *v[c])
*v[c] = a;
c = (c+ 1) % 2;

7 $marks) Reference Counting. The following extends the code from the previous question by adding a procedure
saveIfMax that is implemented in a separate module. Add calls to inc_ref and dec_ref to use referenc-
ing counting to eliminate all dangling pointers and memory leaks in this code while creating no coupling between
saveIfMax and the rest of the code (i.e., save I fMax can not know about what the rest of the code does and neither
can the rest of the code know what saveIfMax does). Do not implement reference counting nor worry about storing
the reference count itself; just add calls to inc_ref and dec_ref in the right places, which may require slightly
rewriting portions of the code.

intx copy (intx src) | intx max;
int* dst = malloc (sizeof (int)); void saveIfMax (int* x) {
*dst = *xsrc; if (max==NULL || *x > *max) {
return dst; max = X;
} }
}
int foo() {
int a = 3;

intx b = copy (&a);
savelfMax (b);

return =*b;

7. Reference Counting s marks|

Modify the following three independent modules to eliminate memory leaks and avoid dangling pointers by
inserting free statements where appropriate and/or changing malloc’s to rc_malloc's and inserting
rc_keep ref and rc_free ref calls where appropriate, following the best practice for using reference
counting. All calls must include correct parameters. The code spans two pages.

/171117111717
// Module A

// private to A and not accessible in any other module
struct A {
struct S* s;
}i
int ¢ = 0;
struct A* a = NULL;

// other modules can call foo
void foo(struct S* s) {
if (¢ % 3 == 0) {
if (a) {
rc_free_ref(a->s->i);
rc_free_ref(a->s);
free(a);
}
a = malloc(sizeof (struct A));
a->s = s;
rc_keep_ref(a->s->i);
rc_keep_ref (a->s);
}
c =c + 1;
*g=>1 = c;

8 ofl1

171117111717
// Module B

int bar() {
struct S* s = rc_malloc(sizeof(struct S));
s->i = rc_malloc(sizeof(int));
foo(s);
int t = *s->i;
rc_free ref(s->i);
rc_free_ref(s);
return t;

}

1111117117
// Shared between models A and B

struct S {
int* i;

}i

171117111717
// Module C

int main() {
int s = 0;
for (int i=0; i<100; i++)
s = s + bar();
printf("%d\n", s);
}

9ofll1

AO BO coO DO EO FO

A: There is no memory leak or dangling pointer; nothing needs to be changed with malloc or free.

7 18 marks] Reference Counting. Consider the following code that is implemented in three independent modules
(and a main module) that share dynamically allocated objects that should be managed using reference counting. The
call to rc_malloc has been added for you; recall that rc_malloc sets the allocated object’s reference count to 1.

7a What does this program print when it executes?

12010

7b Add calls to rc_keep_ref and rc_free_ref to correct implement reference counting for this program
(all modules).

7¢ Assuming this program implements reference counting correctly, give the reference counts (number of pointers
currently pointing to) the following two objects when print £ is called from main?

*p: 2

*g: 4

7d Add code at point TODO so that the program is free of memory leaks and dangling pointers. Your code
may call any of the procedures shown here as well as rc_free_ref. It may not directly access the global
variable b_values (note that this variable is not listed in the “header file contents” section of the code and
so it would not be in scope in main if the modules were implemented is separate files).

[kK kK kK kK ok kK
* Module a

*/
int* a_create(int i) {

int* value = rc_malloc(sizeof (int));

*value = 1i;

return value;

/% ko ok ok ok ok ko k
* Module b
*/

#define B_SIZE 4
int* b_values[A_SIZE];

void b_init () {
for (int 1i=0; i<B_SIZE; i++)
b_values[i] = NULL;

void b_put (int index, intx value) {
if (index>=0 && index<B_SIZE) {

if (b_values[index])
rc_free_ref (b_values[index]);

b_values[index] = value;

if (value)
rc_inc_ref (b_values[index]);

intx b_get (int index) {
return b_values[index];

[%k ok ok kok kK
* Header file content for the three modules - this is all that main can access
*/

int* a_create(int 1i);

void b_init () ;

void b_put (int index, intx* value);

intx b_get (int index);

/% ko ok kok ok
* main

*/

int main(int arc, charxx argv) {
b_init ();
b_put (0, a_create(10));
b_put (1, a_create(20));
b_put (2, b_get(0));
b_put (3, b_get(2));
intx p = b_get (1l);
rc_keep_ref (p);
intx g = b_get (3);
rc_keep_ref (q);
printf ("sd %d", x*p, *q9));
rc_free_ref (p);
rc_free_ref(q);
//TODO

rc_free_ref (p);
rc_free_ref (q);

b_put (0, NULL);
b_put (1, NULL);
b_put (2, NULL);
b_put (3, NULL);

8 [15marks] Reading Assembly. Comment the following assembly code and then translate it into C. Assume that
the caller prologue was completed as shown in lecture, and that register 0 is used to return a value. Use the back of the
preceding page for extra space if you need it.

1 struct my_struct {
2 int nNums;
3 int xnums;
4)
typedef struct my_struct *my_struct_t;
5 wvoid foo(my_struct_t ptr) {
6 int i;
7 for (i = 0; 1 <= ptr->nNums; 1i++) {
8 printf ("%$dn", ptr->nums[i]);
9 }
10 free (ptr);
11}

12 int main(void)

13 {
14 my_struct_t s = malloc(sizeof(s));
15 s—>nNums = 5;
16 s-=>nums = malloc (5 * sizeof (xs->nums));
17 for (int 1 = 0; i < s—->nNums; i++) {
18 s=>nums[i] = 1 + 4;
19 }
20 foo(s);
21 free(s);
22 return O;
23}
8a Error 1:
line:
type:
fix:
8b Error 2:
line:
type:
fix:
8¢ Error 3:
line:
type:
fix:
8d Error 4:
line:
type:
fix:
1. line 7, out of bounds error, change ;=" to ”;”

2. line 10, memory leak, need to also free ptr-;nums”’
3. line 16, incorrect size for malloc, sizeof(int)
4. line 21, dangling pointer (or double free), remove instruction

O (6marks) Reference Counting. The following code has a memory leak bug. Add calls to inc (o) and dec (o)
to increment and decrement the reference count of object o and make any other small changes necessary so that the
program is free of memory leaks and dangling pointers. Assume that rc_malloc calls malloc and initializes the
object’s reference count to zero.

void foo (int i) {

intx ip = rc_malloc (sizeof (int));
inc(ip);

*1p = 1i;

bar (ip);

zot (*xip);

dec (ip); 6

int ¢ = 0;
int*x v[2];

void bar
if (v

int* ap) {
== NULL || *ap < xv[c]) {
] != NULL)

void zot (int a) {

if (v[c] != NULL && a < *v[c])
xv[c] = a;
c = (c+ 1) % 2;

10 (6 marks) Using Function Pointers. Write a C procedure named apply that returns either the minimum or
maximum value of a list of non-negative integers, as determined by one of its parameters, a function pointer. If the list
is empty it should return -1. Assume the existence of procedures named min (a,b) and max (a,b) that compare
two integers and returns the min or max integer. No other procedures are allowed and apply is not permitted to use
an 1if statement. For example, the following statement should compute the maximum value in list a of length n.

int m = apply (max, a, n);

Write the procedure apply () :

int apply (int (*f) (int, int), int* a, int n) {

if (n<=0)

return -1; // for 2016W2 this isn’t necessary.
else {

int v =

01;
=1; i<n; 1i++)

v, alil);

al
for (int 1
v = f(

return v;

11 (6 marks) IO Devices. For each of the following, (a) explain what it is and (b) state whether the CPU or 10
controller determines when it occurs (i.e., initiates it).

11a Programmed IO (PIO):
11b DMA:

11c Interrupts:

12 8 marksy Threads and Scheduling. Answer the following questions about threads.

12a Explain briefly (without giving any code) how threads can be used to simplify code that performs asyn-
chronous operations such as communicating with an IO controller.

12b Explain briefly the difference between uthread_yield and uthread_block.
12¢ Is it possible for a thread to unblock itself? Explain your answer.

12d Consider a system in which there is at least one thread on the ready queue when a thread unblocks. What
happens to the unblocked thread? Explain.

13 (9marks) Synchronization Consider the following C code that uses mutexes and condition variables. The code
is considered to be is correct if both procedures complete successfully when they are called from concurrent threads

And this procedure call:
copy (a, a+3, 6);

List the value of the elements of the array a (in order), following the execution of this procedure call.

111,2,3,1,2,3,1,2,3}

6 (6 marks) Dynamic Allocation. The following four pieces of code are identical except for the their use of
free (). Each of them may be correct or they may have a memory leak, dangling pointer or both. In each case,
determine whether these bugs exists and if so, briefly describe the bug(s); do not describe how to fix the bug.

6a int« copy (int+* src) { int foo() {
intx dst = malloc (sizeof (int)); int a = 3;
*dst = =*src; intx b = copy (&a);
return dst; return xb;

Memory leak, because object allocated in copy is not freed in the shown code and when foo returns it is
unreachable.

6b intx copy (intx src) { int foo() {
int* dst = malloc (sizeof (int)); int a = 3;
+*dst = *src; int* b = copy (&a);
free (dst); return xb;
return dst; }
}
Dangling pointer. After free in copy, dst is a dangling pointer. This value is returned by copy and so b in
foo is also a dangling pointer. The last statement of foo, return «b dereferences this dangling pointer.
6c int» copy (int* src) { int foo() {
int* dst = malloc (sizeof (int)); int a = 3;
+*dst = =*src; intx b = copy (&a);
return dst; free (b);
} return *b;
}
Dangling pointer. After free in foo, b becomes and dangling pointer and it is then dereferenced in the last
statement.
6d intx copy (int* src) { int foo () {
intx dst = malloc (sizeof (int)); int a = 3;
*dst = =*src; intx b = copy (&a);
free (dst); free (b);
return dst; return *b;

Dangling pointer. After free in copy, dst becomes a dangling pointer. This value is returned by copy
and so b in foo is also a dangling pointer. The third statement of foo then calls free again on this value,
attempting to free an object that has already been freed, which results in an error. If the program where to
proceed it would then dereference the dandling pointer in the return statement.

7 $marks) Reference Counting. The following extends the code from the previous question by adding a procedure
saveIfMax that is implemented in a separate module. Add calls to inc_ref and dec_ref to use referenc-
ing counting to eliminate all dangling pointers and memory leaks in this code while creating no coupling between
saveIfMax and the rest of the code (i.e., save I fMax can not know about what the rest of the code does and neither
can the rest of the code know what saveIfMax does). Do not implement reference counting nor worry about storing
the reference count itself; just add calls to inc_ref and dec_ref in the right places, which may require slightly
rewriting portions of the code.

171117111717
// Module B

int bar() {
struct S* s = rc_malloc(sizeof(struct S));
s->i = rc_malloc(sizeof(int));
foo(s);
int t = *s->i;
rc_free ref(s->i);
rc_free_ref(s);
return t;

}

1111117117
// Shared between models A and B

struct S {
int* i;

}i

171117111717
// Module C

int main() {
int s = 0;
for (int i=0; i<100; i++)
s = s + bar();
printf("%d\n", s);
}

9ofll1

7. Reference Counting s marks|

Modify the following three independent modules to eliminate memory leaks and avoid dangling pointers by
inserting free statements where appropriate and/or changing malloc’s to rc_malloc's and inserting
rc_keep ref and rc_free ref calls where appropriate, following the best practice for using reference
counting. All calls must include correct parameters. The code spans two pages.

/171117111717
// Module A

// private to A and not accessible in any other module
struct A {
struct S* s;
}i
int ¢ = 0;
struct A* a = NULL;

// other modules can call foo
void foo(struct S* s) {
if (¢ % 3 == 0) {
if (a) {
rc_free_ref(a->s->i);
rc_free_ref(a->s);
free(a);
}
a = malloc(sizeof (struct A));
a->s = s;
rc_keep_ref(a->s->i);
rc_keep_ref (a->s);
}
c =c + 1;
*g=>1 = c;

8 ofl1

171117111717
// Module B

int bar() {
struct S* s = rc_malloc(sizeof(struct S));
s->i = rc_malloc(sizeof(int));
foo(s);
int t = *s->i;
rc_free ref(s->i);
rc_free_ref(s);
return t;

}

1111117117
// Shared between models A and B

struct S {
int* i;

}i

171117111717
// Module C

int main() {
int s = 0;
for (int i=0; i<100; i++)
s = s + bar();
printf("%d\n", s);
}

9ofll1

77 18 marks] Reference Counting. Consider the following code that is implemented in three independent modules
(and a main module) that share dynamically allocated objects that should be managed using reference counting. The
call to rc_malloc has been added for you; recall that rc_malloc sets the allocated object’s reference count to 1.

7a What does this program print when it executes?

7b Add calls to rc_keep_ref and rc_free_ref to correct implement reference counting for this program
(all modules).

7c¢ Assuming this program implements reference counting correctly, give the reference counts (number of pointers
currently pointing to) the following two objects when print f is called from main?

*p:

*q:

7d Add code at point TODO so that the program is free of memory leaks and dangling pointers. Your code
may call any of the procedures shown here as well as rc_free_ref. It may not directly access the global
variable b_values (note that this variable is not listed in the “header file contents” section of the code and
so it would not be in scope in main if the modules were implemented is separate files).

ok okk ok kok ok ok ok kK
* Module a

*/
int* a_create(int i) {

int* value = rc_malloc(sizeof (int));

*value = 1i;

return value;

/% ko ok ok ok ok ko k
* Module b
*/

#define B_SIZE 4
int* b_values[B_SIZE];

void b_init () {
for (int 1i=0; i<B_SIZE; i++)
b_values[i] = NULL;

void b_put (int index, intx value) {

if (index>=0 && index<B_SIZE) {

b_values[index] = value;

intx b_get (int index) {
return b_values[index];

[%k ok ok kok kK
* Header file content for the three modules - this is all that main can access
*/

int* a_create(int 1i);

void b_init () ;

void b_put (int index, intx* value);

intx b_get (int index);

/% ko ok kok ok
* main

*/

int main(int arc, charxx argv) {
b_init ();
b_put (0, a_create(10));
b_put (1, a_create(20));
b_put (2, b_get (0));
b_put (3, b_get(2));
intx p = b_get (1l);
rc_keep_ref (p);
intx g = b_get (3);
rc_keep_ref (q);
printf ("sd %d", x*p, *q9));
rc_free_ref (p);
rc_free_ref(q);
//TODO

11

