
struct T {

 int x[4];

 int* y;

 };

 struct S* s;

Write the SM213 assembly code that is equivalent to the following C statement

s->c.x[1] = 0;.

Exercise 4

What happens when the following code is compiled (and if it compiles) runs?

void gp (void* inv, void** outv) {

 intptr_t in = (intptr_t) inv;

 intptr_t* out = (intptr_t*) outv;

 *out = in * *out;

}

void fp (void* inv, void** outv) {

 intptr_t in = (intptr_t) inv;

 intptr_t* out = (intptr_t*) outv;

 *out = in + *out;

}

void foo (void** in, void**out, int n, void (*fp) (void*, void**)) {

 for (int i=0; i<n; i++) {

 fp (in[i], out);

 }

}

int main(int argc, char** argv) {

 intptr_t a[] = {2,3,4,5};

 intptr_t v = 1;

 foo ((void**) a, (void**) &v, 4, gp);

 printf ("%ld\n", v);

}

Exercise 5

Consider the following code. Will it introduce a memory leak or a

dangling pointer?

char* copy (char* from, int n) {

 char* to = malloc (n);

 for (int i=0; i<n; i++)

 to[i] = from[i];

 return to;

}

10 (6 marks) Using Function Pointers. Write a C procedure named apply that returns either the minimum or
maximum value of a list of non-negative integers, as determined by one of its parameters, a function pointer. If the list
is empty it should return -1. Assume the existence of procedures named min(a,b) and max(a,b) that compare
two integers and returns the min or max integer. No other procedures are allowed and apply is not permitted to use
an if statement. For example, the following statement should compute the maximum value in list a of length n.

int m = apply (max, a, n);

Write the procedure apply():

11 (6 marks) IO Devices. For each of the following, (a) explain what it is and (b) state whether the CPU or IO
controller determines when it occurs (i.e., initiates it).

11a Programmed IO (PIO):

11b DMA:

11c Interrupts:

10

3 (8 marks) Dynamic Control Flow. Give SM213 assembly code for the following C statements. Assume that i is
a global variable of type int.

3a Using a jump table, the statement:

switch (i) {
case 4:

i = 0;
break;

case 6:
i = 1;
break;

default:
i = 2;
break;

}

3b Where the global variable int (*bar)(void) was previously declared, the statement:

bar();

2

9 (6 marks) Switch Statements. There are two ways to implement switch statements in machine code. For
purposes of this question, lets call them A and B.

9a Describe A, very briefly.

9b Describe B, very briefly.

9c State precisely one situation where A would be preferred over B and why.

9d State precisely one situation where B would be preferred over A and why.

10 (9 marks) IO Devices. Three key hardware features used to incorporate IO Devices with the CPU and memory
are Programmed IO (PIO), Direct Memory Access (DMA) and interrupts.

10a Carefully explain the difference between PIO and DMA; give one advantage of DMA.

10b Demonstrate why interrupts are needed by carefully explaining what programs would have to do differently
to perform IO if interrupts didn’t exist and what disadvantages this approach would have.

10c Explain how interrupts would be added to the Simple Machine simulator by indicating where the interrupt-
handling logic would be added and saying roughly what it would do.

8

8 (12 marks) Static and Dynamic Procedure Calls.

8a Procedure calls in C are normally static. Method invocations in Java are normally dynamic. Carefully explain
the reason why Java uses dynamic method invocation and what benefit this provides to Java programs.

8b Carefully explain an important disadvantage of dynamic invocation in Java or other languages.

8c Demonstrate the use of function pointers in C by writing a procedure called compute that:

1. has three arguments: a non-empty array of integers, the size of the array, and a function pointer;

2. computes either the array min or max depending only on the value of the function pointer argument;

3. contains a for loop, no if statements, and one procedure call (per loop).

Give the C code for compute, the two procedures that it uses (i.e., that are passed to it as the value of the
function-pointer argument), and two calls to compute, one that computes min and the other that computes
max (be sure to indicate which is which).

7

Exercise 4

It prints 120.

Exercise 5

Yes, a memory leak is possible. It can be fixed as follows:

char* copy (char* from, int n) {

 char* to = malloc (n);

 for (int i=0; i<n; i++)

 to[i] = from[i];

 return to;

}

void foo (char* x, int n) {

 char* y = copy (x, n);

 printf ("%s", y);

 free (y);

}

Exercise 6

void getsum (char* buf, int n) {

 int s=0;

 for (int i=0; i<256; i++)

 s += buf[i];

 printf ("%d\n", s);

}

char buf[256];

void ps() {

 int s = async_read (1234, buf, 256, getsum);

}

int c = 0;
int* v[2];

void bar (int* ap) {
if (v[c] == NULL || *ap < *v[c]) {

if (v[c] != NULL)
dec(v[c]);

v[c] = ap;
inc(v[c]);

}
c = (c + 1) % 2;

}

void zot (int a) {
if (v[c] != NULL && a < *v[c])

*v[c] = a;
c = (c + 1) % 2;

}

10 (6 marks) Using Function Pointers. Write a C procedure named apply that returns either the minimum or
maximum value of a list of non-negative integers, as determined by one of its parameters, a function pointer. If the list
is empty it should return -1. Assume the existence of procedures named min(a,b) and max(a,b) that compare
two integers and returns the min or max integer. No other procedures are allowed and apply is not permitted to use
an if statement. For example, the following statement should compute the maximum value in list a of length n.

int m = apply (max, a, n);

Write the procedure apply():

int apply (int (*f)(int, int), int* a, int n) {
if (n<=0)

return -1; // for 2016W2 this isn’t necessary.
else {

int v = a[0];
for (int i=1; i<n; i++)

v = f(v, a[i]);
return v;

}
}

11 (6 marks) IO Devices. For each of the following, (a) explain what it is and (b) state whether the CPU or IO
controller determines when it occurs (i.e., initiates it).

11a Programmed IO (PIO):

11b DMA:

11c Interrupts:

12 (8 marks) Threads and Scheduling. Answer the following questions about threads.

12a Explain briefly (without giving any code) how threads can be used to simplify code that performs asyn-
chronous operations such as communicating with an IO controller.

12b Explain briefly the difference between uthread_yield and uthread_block.

12c Is it possible for a thread to unblock itself? Explain your answer.

12d Consider a system in which there is at least one thread on the ready queue when a thread unblocks. What
happens to the unblocked thread? Explain.

13 (9 marks) Synchronization Consider the following C code that uses mutexes and condition variables. The code
is considered to be is correct if both procedures complete successfully when they are called from concurrent threads

7

CPSC 213, Winter 2015, Term 2 — Extra Questions Solution
Date: March 3, 2015; Instructor: Mike Feeley

1 (8 marks) Loops and If. The following assembly code computes s = a[0] where a is a global, static array
of integers. Modify this code so that it computes the sum of all positive elements of the array where the size of the
array is stored in a global int named n. Your solution should avoid unnecessary memory accesses where possible (e.g.,
inside of the loop). You may modify the code in place. Comment every line you add. Hint: notice that you have to
add four things: (1) read the value of n, (2) turn part of this code into a loop, (3) exit the loop at the right time, and (4)
only sum positive numbers; you might want to take these one at a time.

2 (6 marks) Static Control Flow. Give SM213 assembly code for the following C statements. Assume that i is a
global variable of type int.

2a if (i==0)
i = 1;

else
i = 2;

ld $i, r0 # r0 = &i
ld (r0), r1 # r1 = i
beq r1, L0 # goto L0 if i==0
ld $2, r2 # t_i = 2 if i !=0
br L1 # goto L1

L0: ld $1, r2 # t_i = 1 if i==0
L1: st r2, (r0) # i = t_i

2b while (i!=0)
i -= 1;

ld $i, r0 # r0 = &i
ld (r0), r1 # t_i = i

L0: beq r1, L2 # goto L1 if t_i == 0
dec r1 # t_i--
br L0 # goto L0

L1: st r1, (r0) # i = t_i

3 (8 marks) Dynamic Control Flow. Give SM213 assembly code for the following C statements. Assume that i is
a global variable of type int.

3a Using a jump table, the statement:

switch (i) {
case 4:

i = 0;
break;

case 6:
i = 1;
break;

default:
i = 2;
break;

}

ld $i, r0 # r0 = &i
ld (r0), r1 # r1 = i
ld $-4, r2 # r2 = -4
add r2, r1 # r1 = i-4
bgt r1, L0 # goto L0 if i > 4
beq r1, L0 # goto L0 if i == 4
br DEFAULT # goto L0 if i < 4

L0: ld $-2, r2 # r2 = -2
add r1, r2 # r2 = i-6
bgt r2, DEFAULT # goto DEFAULT if i > 6
ld $JT, r2 # r2 = JT
j *(r2, r1, 4) # goto jt[i-4]

CASE_4: ld $0, r2 # t_i = 0
br L1 # goto L1

CASE_6: ld $1, r2 # t_i = 1
br L1 # goto L1

DEFAULT: ld $2, r2 # t_i = 2
L1: st r2, (r0) # i = t_i

The Jump Table
JT: .long CASE_4

.long DEFAULT

.long CASE_6

3b Where the global variable int (*bar)(void) was previously declared, the statement:

bar();

ld $bar, r0 # r0 = &bar
gpc $2, r6 # r6 = return address
j *(r0) # bar()

4 (8 marks) Procedure Calls. Give SM213 assembly for these statements. Assume the i is a global variable of type
int, that r5 stores the value of the stack pointer, and that arguments are passed on the stack.

4a int foo (int i, int j) {
return j;

}

ld 4(r6), r0 # r0 = j
j (r6) # return j

4b i = foo (1, 2);

deca r5 # make stack space for arg0
deca r5 # make stack space for arg1
ld $1, r0 # r0 = 1
st r0, 0(r5) # arg0 = 1
ld $2, r0 # r0 = 2
st r0, 4(r5) # arg1 = 2
gpc $6, r6 # r6 = return address
j foo # t_i = foo (1,2)
inca r5 # free stack space for arg1
inca r5 # free stack space for arg0
ld $i, r1 # r1 = &i
st r0, (r1) # r1 = t_i

5 (12 marks) Consider the following SM213 assembly code that implements a simple C procedure.

2

8 (12 marks) Static and Dynamic Procedure Calls.

8a Procedure calls in C are normally static. Method invocations in Java are normally dynamic. Carefully explain
the reason why Java uses dynamic method invocation and what benefit this provides to Java programs.

Java’s method invocations are dynamic because they read a jump table at runtime to determine which method
to call. Which method is called depends on the actual type of the object, since each class has its own jump
table.

Dynamic method invocation allows for polymorphic dispatch to occur. Polymorphism is a powerful tool
makes it easy to add functionality to existing code by simply extending a class and overriding methods.

8b Carefully explain an important disadvantage of dynamic invocation in Java or other languages.

Every method call has the additional overhead of performing a memory read to determine which method to
call. This can affect performance, especially for very short methods where a memory read might consist of a
significant amount of the method’s execution time.

8c Demonstrate the use of function pointers in C by writing a procedure called compute that:

1. has three arguments: a non-empty array of integers, the size of the array, and a function pointer;

2. computes either the array min or max depending only on the value of the function pointer argument;

3. contains a for loop, no if statements, and one procedure call (per loop).

Give the C code for compute, the two procedures that it uses (i.e., that are passed to it as the value of the
function-pointer argument), and two calls to compute, one that computes min and the other that computes
max (be sure to indicate which is which).

int compute(int* array, int size, int (*fn)(int, int)) {
int acc = array[0];
for (int i = 1; i < size; i++) {

acc = fn(acc, array[i]);
}
return acc;

}

int max(int a, int b) {
return a > b ? a : b;

}

int min(int a , int b) {
return a < b ? a : b;

}

int arr[5] = {7, -4, 1, 9, 3};

compute(arr, 5, max); // returns max of array
compute(arr, 5, min); // returns min of array

The first thing you should do when asked this type of question is to figure out what your function signature
should look like - how many arguments does it have, what types are they, and what type is the return value?
Also give your parameters meaningful names.

Make sure you think about edge cases. If we weren’t told that the array is non-empty, we wouldn’t be able to
do int acc = array[0]; without potentially segfaulting or causing undefined behavior.

Search for ’ternary operator’ if you’re not sure about the syntax of the expressions in max and min. Knowing
shorthand coding tricks like this will save you time when writing code in an exam.

8

9 (6 marks) Switch Statements. There are two ways to implement switch statements in machine code. For
purposes of this question, lets call them A and B.

9a Describe A, very briefly.

A sequence of if statements.

9b Describe B, very briefly.

A jump table of labels corresponding to switch-cases.

9c State precisely one situation where A would be preferred over B and why.

If there are very few cases to consider, then the overhead of using a jumptable is higher than a few statements.
Reading memory is much slower than executing a conditional branch.

OR: If the case values are spread apart (sparsely populated), there will be a lot of wasted memory in the
jumptable because we have to represent a contiguous range of values in a jump table. e.g.

switch (i) {
case 1:

j = 5;
break;

case 1000000:
j = 10;
break;

}
would require a jump table with one million elements!

9d State precisely one situation where B would be preferred over A and why.

When you have lots of cases to check and their values are close together (densely populated), the jump table
is the best choice. When there are N cases, it takes O(N) to test all cases, whereas it will always take O(1)
with a jump table. If the values are closer together, then we waste less memory creating the jump table.

10 (9 marks) IO Devices. Three key hardware features used to incorporate IO Devices with the CPU and memory
are Programmed IO (PIO), Direct Memory Access (DMA) and interrupts.

10a Carefully explain the difference between PIO and DMA; give one advantage of DMA.

The CPU uses PIO to read or write to an IO device one word at a time. IO Devices use DMA to read or write
memory directly, without involving the CPU. An advantage of PIO is that the CPU can use it to transfer data
to an IO device, or control it; e.g., to signal the IO device that the CPU wants something, Another advantage
is that PIO has lower overhead and lower latency for very small transfers because it avoids the overhead of
setting up a DMA. The advantage of DMA is that the transfer occurs asynchronously to the CPU and so the
CPU is free to do other things during the transfer. For any transfer larger than 64-128 bytes, DMA typically
transfers with lower overhead and latency than PIO.

10b Demonstrate why interrupts are needed by carefully explaining what programs would have to do differently
to perform IO if interrupts didn’t exist and what disadvantages this approach would have.

If interrupts didn’t exist, a program would have to repeatedly poll the IO device to determine whether the
device had information (e.g., keyboard presses) for it. The disadvantages of polling are that it wastes CPU
cycles unnecessarily when the IO device doesn’t have information for the CPU. If polling is very frequent,
then this overhead is very high.

Infrequent polling may not be a suitable solution either because it increases the latency (i.e., delay) between
when an IO device notifies the CPU that it wants its attention, and when the CPU actually notices it. This
would increase, for example, the latency of disk and network reads. There is an undesirable tradeoff between
latency and CPU ‘wastage’.

10c Explain how interrupts would be added to the Simple Machine simulator by indicating where the interrupt-
handling logic would be added and saying roughly what it would do.

9

