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Background: Adapters

Allocate additional capacity for to
enable transfer learning on
iIncoming downstream tasks without
training a new model for every task
using adapters

Small bottleneck layers inserted
between a pre-trained model’'s
weights

Adapter parameters are
encapsulated between transformer
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Background: Linear Mapping Image to Text

e Learns a simple mapping (similar to adapters) to bridge pre-trained image

models and pre-trained LM
e Allows deep analysis of individually-trained visual encoders and transfer of

their features

A frozen image encoder A linear projection is tuned The image projections are
encodes an image as a to project from image fed as soft prompts into a
feature map space to text space generative LM
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Background: Adversarial Reprogramming

e Repurpose the pretrained model to perform a new task through input space
transformation

e Similar to Adapters but does the transformation at input and output level

e Computationally cheaper

»M; =0
HE A after optimization

input image (with padding) reprogramming mask




Background: Cross Modal Reprogramming
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Background: FiLM

Feature-wise affine transformation
based on conditioning information.

Highly effective for visual reasoning
tasks that require multi-step,
high-level processing, a challenge
for standard deep learning methods
that don't explicitly model
reasoning.
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Background: Modality Fusion Strategies
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Background: Masked Autoencoders (MAE)

e Self-supervised pre-training of vision models (similar to BERT in language
processing)
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Motivation

Current SOTA vision models have achieved impressive results on various
visual recognition tasks. However, these models still fail to generalize to
out-of-distribution (OOD) settings.

Prior work such as CLIP has demonstrated strong zero-shot performance on
several downstream tasks by leveraging image-caption pairs. However,
collecting large amounts of such pairs can be expensive and impractical for
certain domains, such as medical imaging or remote sensing.

Can we adapt existing vision models with minimal language supervision by
using a limited number of image-caption pairs?



Approach 1: MAE + LM
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Approach 2: MAE + CL
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Approach 2: MAE + CL + Adapters

encoder e Introduces adapters for information
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Background: Wise-FT

e Fine-tuning pretrained models on a target distribution often leads to reduce
robustness to distribution shifts

e Can zero-shot models be fine-tuned without reducing accuracy under
distribution shift?

Schematic: our method, WISE-FT leads to
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alpha x finetuned model + (1 - alpha) x pretrained model

Results

Dino ViT-B16 Token Replay Adapters (ImageNet 20K) - KNN evaluation
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Results

Dino ViT-B16 Token Replay Adapters (CC 20K) - KNN evaluation
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Results

Dino ViT-B16 FiLM Adapters (COCO 10K) - KNN evaluation
® CIFAR10 @ SVHN
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Findings

e \Ve observe a decrease in performance after finetuning models on CC-3M
and COCO using our proposed approaches on in-domain sets such as CIFAR
compared to pretrained models on ImageNet, which is a dataset that is closer
in distribution to CIFAR.

e Our method sometimes outperforms pretrained models on datasets such as
SVHN, EuroSAT, DTD, which is not closer in distribution to ImageNet.

e Some regularization is needed to ensure that the performance on in-domain
sets is not affected while adapting the models to out-of-domain sets.

e Future direction might be to do Selective k-finetuning approaches or
approaches similar to LST (Ladder Side Tuning) to prevent ID performance
collapse due to shift in distribution.



Generalization Metrics: WeightWatcher

e Analyzes the weight matrices of deep neural networks to provide insights into
their generalization performance.

e Calculates an "alpha" value, which is a measure of the level of overfitting in
the model by comparing the distribution of the singular values of the weight
matrices of the model to the expected distribution of the singular values for a
random matrix of the same dimensions.
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Back to the drawing board



Background: Mixture of Experts (MoE)

Combines multiple models y
(“experts”) to form a single, more
powerful predictive model

Each expert is responsible for
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Background: Sparse Upcycling

e MoEs requires data and compute at scale due to sparse nature.

e Sparse upcycling reuses the dense checkpoints as a good initialization to
reduce the training cost.
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Background: MAGMA

e Augments generative language models with additional modalities using
adapter-based finetuning.

Adapter Block
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Figure 1: Overview of the Hash Layer. Tokens are routed to fixed expert modules based on their
hash.



Our approach

e Improves MAGMA by adding a learnable MoE for better representation
learning

e Next Steps:

o Test the efficacy of the proposed approach on image-captioning datasets such as
CC-3M. (In progress)

o Explore the effect of sparsity by introducing different gating mechanism in routing
for trade-off between compute efficiency and generalization.

o Resolve MoE instability issues by optimizing hyper-params related to scale of init.

o Scale to Summit HPC.



Summit HPC

Specifications and Features

Processor: IBM POWER9™ (2/node)

GPUs: 27,648 NVIDIA Volta V100s (6/node)
Nodes: 4,608

Node Performance: 42TF

Memory/node: 512GB DDR4 + 96GB HBM2
NV Memory/node: 1600GB

Total System Memory: >10PB DDR4 + HBM + Non-volatile
Interconnect Topology: Mellanox EDR 100G InfiniBand, Non-blocking
Fat Tree

Peak Power Consumption: 13MW



Takeaways/ Issues

o o

Cross modal reprogramming from language to visual tokens is hard and unstable due to the
unstructured nature of natural language and many to one mapping.

We faced numerous challenges with getting hyper-params to work to get a converging loss
profile when training adapter based reprogrammers. We hypothesized that this is due to the
fact that the early reprogrammed input to the adapter might be introducing pure noise that
the randomly initialized adapters fail to be conditioned on properly.

An additional issue was the fact that the only ID dataset which had captions was ImageNet
on which numerous image models were available however the ImageNet captions are quite
poor and do not necessarily help in learning.

Lack of diverse weights for MAE models. We only had one checkpoint for a encoder+
decoder pretrained MAE.

[Current] Solving instability issues with large sparse MoE models.

[Current] Scaling to Summit HPC has challenges in parallelization and acceleration due to
IBM Power9 System constraints.



Questions?



