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Background: Adapters
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● Allocate additional capacity for to enable 
transfer learning on incoming 
downstream tasks without training a new 
model for every task using adapters

● Small bottleneck layers inserted between 
a pre-trained model’s weights

● Adapter parameters are encapsulated 
between transformer layers with 
parameters which are frozen
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Ablations:
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Type: (s)caled or (p)arallel. λ: 1 or (t)rained. Attn, FF: Downsample factor of the bottleneck in the resp. position. – means not 
applied. Params: Number of trainable parameters relative to the ablation with sequential FF adapters with downsample factor 4
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Ablations: Insights
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1. Applying adapters to the attention layer is key.

2. More adapter parameters to the feed forward layer increases performance on knowledge-based tasks.

3. Balancing attention and feed-forward parameter allocation aids scene understanding.

4. CLIP-RN50x16, on average, performs best at VQA tasks.

5. CLIP-ViT has the worst average score across question answering tasks.
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